Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Photon Counting Statistics Of Classical And Quantum Light Sources, Luis Felipe Morales Bultron Aug 2023

Photon Counting Statistics Of Classical And Quantum Light Sources, Luis Felipe Morales Bultron

Graduate Theses and Dissertations

Multiple sources of light, including coherent light, thermal light, light from a degenerate parametric oscillation and resonance fluorescence from a two level coherently driven atom are considered for the analysis of their wait time statistics. We include the second order normalized correlation function and Mandel's Q parameter for brief discussion. A general framework to analyze the generalized conditional and unconditional wait time distributions is also obtained in order to understand the photo-count statistics of the light sources included in this work. Average and variance of wait times with respect to both unconditional and conditional wait time distribution are also obtained …


Etching Of Silicon Wafer In Preparation Of Graphene Transfer, Floyd T. Lancaster Iii Aug 2023

Etching Of Silicon Wafer In Preparation Of Graphene Transfer, Floyd T. Lancaster Iii

Graduate Theses and Dissertations

Following the research done on graphene looking at its unique properties it has been found that graphene can be used as a varying capacitor. What has been observed is that graphene acts almost like a torrential ocean constantly fluctuating. What we use is a silicon wafer with multiple etched layers to create a stable platform on which to capture this energy. In this paper we will discuss the general setup and step-by-step procedures required to create a functioning variable capacitor out of graphene, gold, and Silicon dioxide (SiO2) substrate. Electron Beam Lithography (EBL) is used to create the initial design …


Circuitry And Semiconductor Studies For Making A Graphene Energy Harvesting Device, Ferdinand Harerimana Aug 2023

Circuitry And Semiconductor Studies For Making A Graphene Energy Harvesting Device, Ferdinand Harerimana

Graduate Theses and Dissertations

Freestanding graphene has constantly moving ripples. Due to its extreme flexibility, graphene responds to ambient vibrations and changes its curvature from concave to convex and vice versa. During a ripple inversion 10,000 atoms move together, suggesting the presence of kinetic energy which can be harvested. In this study we present circuitry and semiconductor studies for harvesting energy from graphene vibrations. The goal of the study is to develop a graphene energy harvesting chip which can serve as a battery replacement in low power electronics. In the first study we determined the best circuit for harvesting vibrational low power. To do …


Exploring Ferroelectric Phenomena In Batio3, Linbo3, And Liznsb: From Extended Oxygen Vacancies To Tri-Stable Polarization And Giant Hyperferroelectricity, Shaohui Qiu May 2023

Exploring Ferroelectric Phenomena In Batio3, Linbo3, And Liznsb: From Extended Oxygen Vacancies To Tri-Stable Polarization And Giant Hyperferroelectricity, Shaohui Qiu

Graduate Theses and Dissertations

This dissertation presents three projects that investigate the complex phenomena of ferroelectricity under different conditions in BaTiO3, LiNbO3, and LiZnSb using first-principles density functional calculations. Extended defects in ferroelectric solids play a crucial role in reducing the lifetime and performance of ferroelectric devices by causing fatigue, domain pinning, and aging. Thus, understanding their impact is of critical importance for the development of reliable and high-performance ferroelectric devices. In addition, hyperferroelectricity is an intriguing phenomenon that has attracted much attention in recent years. Despite the existence of depolarization field, spontaneous polarization persists under an open-circuit boundary condition (OCBC), making hyperferroelectric materials …


Understanding And Tuning Magnetism In Van Der Waals Magnetic Compounds, Rabindra Basnet May 2023

Understanding And Tuning Magnetism In Van Der Waals Magnetic Compounds, Rabindra Basnet

Graduate Theses and Dissertations

The recently discovered two-dimensional (2D) magnetism has attracted intensive attention due to possible magnetic phenomenon arising from 2D magnetism and their promising potential for spintronics applications. The advances in 2D magnetism have motivated the study of layered magnetic materials, and further enhanced our ability to tune their magnetic properties. Among various layered magnets, tunable magnetism has been widely investigated in metal thiophosphates MPX3. It is a class of magnetic van der Waals (vdW) materials with antiferromagnetic ordering persisting down to atomically thin limit. Their magnetism originates from the localized moments due to 3d electrons in transition metal ions. So, their …


First-Principal Investigations Of The Electronic, Magnetic, And Thermoelectric Properties Of Crtirhal Quaternary Heusler Alloy, Shuruq Alsayegh May 2023

First-Principal Investigations Of The Electronic, Magnetic, And Thermoelectric Properties Of Crtirhal Quaternary Heusler Alloy, Shuruq Alsayegh

Graduate Theses and Dissertations

Density functional theory calculations are performed to investigate the electrical electronic, magnetic, and thermoelectric properties of CrTiRhAl quaternary Heusler alloy (QHA). The type-I atomic configuration is found to be the most stable structure of this alloy. The CrTiRhAl QHA exhibits a half-metallic ferromagnetic structure with a narrow band gap at one spin channel (semiconductor), and a metallic behavior at the other spin channel. This corresponds to a 100% spin-polarization, making it ideal for potential spintronic applications. Applying the semi-classical Boltzmann theory, the Seebeck coefficient, electrical conductivity, and electronic thermal conductivity of CrTiRhAl alloy were calculated. The predicted figure of merit …


Asymptotic Properties And Separation Rates For Navier-Stokes Flows, Patrick Michael Phelps May 2023

Asymptotic Properties And Separation Rates For Navier-Stokes Flows, Patrick Michael Phelps

Graduate Theses and Dissertations

In this dissertation, we investigate asymptotic properties of local energy solutions to the Navier-Stokes equations and develop an application which controls the separation of non-unique solutions in this class. Specifically, we quantify the rate at which two, possibly unique solutions evolving from the same data may separate pointwise away from a singularity. This is motivated by recent results on non-uniqueness for forced and unforced Navier-Stokes and analytical and numerical evidence suggesting non-uniqueness in the Leray class. Our investigation begins with discretely self-similar solutions known to exist globally in time and to be regular outside a space-time paraboloid. We prove decay …