Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Community Detection In Complex Networks, Zhenqi Lu Aug 2021

Community Detection In Complex Networks, Zhenqi Lu

McKelvey School of Engineering Theses & Dissertations

Network science plays a central role in understanding and modeling complex systems in many disciplines, including physics, sociology, biology, computer science, economics, politics, and neuroscience. By studying networks, we can gain a deep understanding of the behavior of the systems they represent. Many networks exhibit community structure, i.e., they have clusters of nodes that are locally densely interconnected. These communities manifest the hierarchical organization of the objects in systems, and detecting communities greatly facilitates the study of the organization and structure of complex systems.

Most existing community-detection methods consider low-order connection patterns, at the level of individual links. But high-order …


Non-Hermitian Physics And Engineering In Whispering Gallery Mode Microresonators, Changqing Wang Aug 2021

Non-Hermitian Physics And Engineering In Whispering Gallery Mode Microresonators, Changqing Wang

McKelvey School of Engineering Theses & Dissertations

Non-Hermitian physics describes the behaviors of open systems which have interactions with the environment. It can be applied to a wide range of classical and quantum systems. Exotic physical phenomena are unveiled in such non-Hermitian systems, especially around a singular point in the parameter space, i.e., the exceptional point (EP), where the eigenvalues and the associated eigenvectors are degenerate. A plethora of demonstrations have been found in optics and photonics, where the non-Hermitian effects are ubiquitous due to the existence of optical dissipation or amplification. In particular, whispering gallery mode (WGM) resonators are ideal candidates for studying light-matter interactions in …


Assessment And Diagnosis Of Human Colorectal And Ovarian Cancer Using Optical Imaging And Computer-Aided Diagnosis, Yifeng Zeng May 2021

Assessment And Diagnosis Of Human Colorectal And Ovarian Cancer Using Optical Imaging And Computer-Aided Diagnosis, Yifeng Zeng

McKelvey School of Engineering Theses & Dissertations

Tissue optical scattering has recently emerged as an important diagnosis parameter associated with early tumor development and progression. To characterize the differences between benign and malignant colorectal tissues, we have created an automated optical scattering coefficient mapping algorithm using an optical coherence tomography (OCT) system. A novel feature called the angular spectrum index quantifies the scattering coefficient distribution. In addition to scattering, subsurface morphological changes are also associated with the development of colorectal cancer. We have observed a specific mucosa structure indicating normal human colorectal tissue, and have developed a real-time pattern recognition neural network to localize this specific structure …


Mutual Interaction Induced Multi-Particle Physics In Qed Systems – Cooperative Spontaneous Emission And Photonic Dimer Enhanced Two-Photon Excitation, Yao Zhou Jan 2021

Mutual Interaction Induced Multi-Particle Physics In Qed Systems – Cooperative Spontaneous Emission And Photonic Dimer Enhanced Two-Photon Excitation, Yao Zhou

McKelvey School of Engineering Theses & Dissertations

In recent years, the study of quantum electrodynamics (QED) in light-matter interactions has discovered various interesting phenomenons that orient many applications. However, due to the ambient entanglement among photons and atoms, few-particle dynamics remains challenging to analyze precisely and limits the progress in several fields. In few-particle systems, different number of atoms interacting with the light field generates drastically different results, even when there is only a single photon involved in the system. The interference between individual atom’s spontaneous emission wavefunctions can cooperatively alter the effective atom-light coupling strength. Depending on the spatial distance between individual of atoms and the …