Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Utah State University

T. -C. Shen

Silicon

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Electron Transport In Laterally Confined Phosphorus Δ-Layers In Silicon, S. J. Robinson, J. S. Kline, H. J. Wheelwright, J. R. Tucker, C. L. Yang, R. R. Du, B. E. Volland, I. W. Rangelow, T. -C. Shen Jan 2006

Electron Transport In Laterally Confined Phosphorus Δ-Layers In Silicon, S. J. Robinson, J. S. Kline, H. J. Wheelwright, J. R. Tucker, C. L. Yang, R. R. Du, B. E. Volland, I. W. Rangelow, T. -C. Shen

T. -C. Shen

Two-dimensional electron systems fabricated from a single layer of P-donors have been lithographically confined to nanometer scale in lateral directions. The electronic transport of such quasi-one-dimensional systems with and without a perpendicular magnetic field was characterized at cryogenic temperatures. Experimental data fit well with two-dimensional weak localization and interaction theory when the phase coherence length is shorter than the smaller dimension of the confinement. Below a transition temperature the wire conductance saturates.


Nanoscale Electronics Based On 2d Dopant Patterns In Silicon, T. -C. Shen, J. S. Kline, T. Schenkel, S. J. Robinson, J. -Y. Ji, C. L. Yang, R. R. Du, J. R. Tucker Jan 2004

Nanoscale Electronics Based On 2d Dopant Patterns In Silicon, T. -C. Shen, J. S. Kline, T. Schenkel, S. J. Robinson, J. -Y. Ji, C. L. Yang, R. R. Du, J. R. Tucker

T. -C. Shen

A nanoscale fabrication process compatible with present Si technology is reported. Preimplanted contact arrays provide external leads for scanning tunneling microscope (STM)-defined dopantpatterns. The STM’s low energy electron beam removes hydrogen from H terminated Si(100) surfaces for selective adsorption of PH3 precursor molecules, followed by room temperature Si overgrowth and 500 °C rapid thermal anneal to create activated P-donor patterns in contact with As+-implanted lines. Electrical and magnetoresistance measurements are reported here on 50 and 95 nm-wide P-donor lines, along with Ga-acceptor wires created by focused ion beams, as a means for extending Si device fabrication toward …


Low Temperature Silicon Epitaxy On Hydrogen Terminated Si(100) Surfaces, J. -Y. Ji, T. -C. Shen Jan 2004

Low Temperature Silicon Epitaxy On Hydrogen Terminated Si(100) Surfaces, J. -Y. Ji, T. -C. Shen

T. -C. Shen

Si deposition on H terminated Si(001)-2×1 surfaces at temperatures 300–530K is studied by scanning tunneling microscopy. Hydrogen apparently hinders Si adatom diffusion and enhances surface roughening. The post-growth annealing effect is analyzed. Hydrogen is shown to remain on the growth front up to at least 10ML. Si deposition onto the H/Si(001)-3×1 surface at 530K suggests that dihydride units further suppress Si adatom diffusion and increase surface roughness.


Ultra-Dense Phosphorous Delta-Layer Grown Into Silicon From Ph3 Molecular Precursors, T. -C. Shen, J. -Y. Ji, M. A. Zudov, R. -R. Du, J. S. Kline, J. R. Tucker Jan 2002

Ultra-Dense Phosphorous Delta-Layer Grown Into Silicon From Ph3 Molecular Precursors, T. -C. Shen, J. -Y. Ji, M. A. Zudov, R. -R. Du, J. S. Kline, J. R. Tucker

T. -C. Shen

Phosphorous δ-doping layers were fabricated in silicon by PH3 deposition at room temperature, followed by low-temperature Si epitaxy.Scanning tunneling microscope images indicate large H coverage, and regions of c(2×2) structure. Hall data imply full carrier activation with mobility<40 cm2/V s when the surface coverage is ≲0.2 ML. Conductivity measurements show a ln(T) behavior at low temperatures, characteristic of a high-density two-dimensional conductor. Possible future applications to atom-scale electronics and quantum computation are briefly discussed.


Nanometer Scale Patterning And Oxidation Of Silicon Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, G. C. Abeln, T. -C. Shen, C. Wang, J. R. Tucker Aug 1994

Nanometer Scale Patterning And Oxidation Of Silicon Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, G. C. Abeln, T. -C. Shen, C. Wang, J. R. Tucker

T. -C. Shen

Nanoscale patterning of the Si(100)‐2×1 monohydride surface has been achieved by using an ultrahigh vacuum (UHV) scanning tunneling microscope(STM) to selectively desorb the hydrogen passivation. Hydrogen passivation on silicon represents one of the simplest possible resist systems for nanolithography experiments. After preparing high quality H‐passivated surfaces in the UHV chamber, patterning is achieved by operating the STM in field emission. The field emitted electrons stimulate the desorption of molecular hydrogen, restoring clean Si(100)‐2×1 in the patterned area. This depassivation mechanism seems to be related to the electron kinetic energy for patterning at higher voltages and the electron current for low …