Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Utah State University

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 1830

Full-Text Articles in Physical Sciences and Mathematics

Analyzing Atmospheric Gravity Waves Over Antarctica And Visualizing Machine Learning Data, Anastasia N. Brown May 2024

Analyzing Atmospheric Gravity Waves Over Antarctica And Visualizing Machine Learning Data, Anastasia N. Brown

Physics Capstone Projects

In an effort to streamline the identification of "clean" windows of airglow images in all sky imager data for the ANGWIN experiment, we have developed a Light Gradient Boosted Machine (LightGBM) learning algorithm that sorts "clean" (marked as 0) wave images from "obscured" (marked as 1) images. These "clean" windows are then processed and undergo FFT-spectrum analysis. We have already successfully created LightGBM models that accurately sort through images taken at the Davis, McMurdo, and Halley research stations in Antarctica. Imager data from the Davis and McMurdo station has been fully processed from the years 2012 to 2022 with clean …


Divergence-Free Tensor Densities In Two Dimensions, Tyler Hansen May 2024

Divergence-Free Tensor Densities In Two Dimensions, Tyler Hansen

All Graduate Theses and Dissertations, Fall 2023 to Present

In physics, a common method for exploring the way a physical system changes over time is to look at the system’s energy. Roughly speaking, the energy in these systems are either motion-based (kinetic energy, a bullet in flight) or position-based (potential energy, a rock sitting at the top of a hill). The difference between the system’s total kinetic and potential energies is quantified by an expression called the Lagrangian. Using a special procedure, this Lagrangian is massaged to produce a group of equations called the Euler-Lagrange equations; if the initial configuration of the system is provided, the solution to these …


Simulating Ice Particle Properties Under Varying Electric Fields, Joseph Cooney Apr 2024

Simulating Ice Particle Properties Under Varying Electric Fields, Joseph Cooney

Physics Capstone Projects

In this study, the interactions between atmospheric water molecules and an electrically charged dust particle were simulated in python to determine the role of electric charge and electric fields in atmospheric ice formation. Multiple levels of electric charge were tested, corresponding to different strengths of atmospheric electric fields. The TIP4P-2005 model for water was used to simulate these molecules under the influence of a central electric potential to represent the charged dust particle. These included a control group with no electric field (0 C), a group under a fair-weather strength of electric field (1.6*10-14 C), a foul-weather electric field (1.6*10-12 …


Non-Destructive Thickness Uniformity Measurement Of Photosensitive Gelatin Film, Clayton Halper Apr 2024

Non-Destructive Thickness Uniformity Measurement Of Photosensitive Gelatin Film, Clayton Halper

Physics Capstone Projects

Volume phase holographic gratings (VPHG’s) depend on dichromate gelatin of which uniform thickness is vital. The photosensitive nature of the film makes current thin film measurement devices not viable for production means. This project attempts to create a non-destructive measurement of photosensitive gelatin film used in VPHG production. Application of thin film interference at chosen wavelengths enable analysis of uniformity by comparison between the thin film inference patterns at different wavelengths. An initial proof of concept was established and a path towards a production ready device is outlined.


The First Variational Formula, The Phase Space Of Solutions, And The Ostrogradsky Formalism, Matthew Pontius, Drew Watson Apr 2024

The First Variational Formula, The Phase Space Of Solutions, And The Ostrogradsky Formalism, Matthew Pontius, Drew Watson

Physics Capstone Projects

We consider Lagrangians for classical mechanics which depend upon an arbitrary number of time derivatives of the configuration variables. From the boundary term in the first variation of the Lagrangian we derive the Ostrogradsky formulas which define the Hamiltonian formulation of mechanical systems.


Anomaly Detection On Small Wind Turbine Blades Using Deep Learning Algorithms, Bridger Altice, Edwin Nazario, Mason Davis, Mohammad Shekaramiz, Todd K. Moon, Mohammad A. S. Masoum Feb 2024

Anomaly Detection On Small Wind Turbine Blades Using Deep Learning Algorithms, Bridger Altice, Edwin Nazario, Mason Davis, Mohammad Shekaramiz, Todd K. Moon, Mohammad A. S. Masoum

Electrical and Computer Engineering Faculty Publications

Wind turbine blade maintenance is expensive, dangerous, time-consuming, and prone to misdiagnosis. A potential solution to aid preventative maintenance is using deep learning and drones for inspection and early fault detection. In this research, five base deep learning architectures are investigated for anomaly detection on wind turbine blades, including Xception, Resnet-50, AlexNet, and VGG-19, along with a custom convolutional neural network. For further analysis, transfer learning approaches were also proposed and developed, utilizing these architectures as the feature extraction layers. In order to investigate model performance, a new dataset containing 6000 RGB images was created, making use of indoor and …


Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti Nov 2023

Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti

Mechanical and Aerospace Engineering Faculty Publications

Inertial particles in wall-bounded turbulence are known to form streaks, but experimental evidence and predictive understanding of this phenomenon is lacking, especially in regimes relevant to atmospheric flows. We carry out wind tunnel measurements to investigate this process, characterizing the transport of microscopic particles suspended in turbulent boundary layers. The friction Reynolds number Re𝜏 = O(104) allows for significant scale separation and the emergence of large-scale motions, while the range of viscous Stokes number St+ = 18–870 is relevant to the transport of dust and fine sand in the atmospheric surface layer. We …


A Simple Method For Determining Shallow Charge Distributions In Dielectrics Via Pulsed Electroacoustic Measurements, Zachary Gibson, J. R. Dennison Aug 2023

A Simple Method For Determining Shallow Charge Distributions In Dielectrics Via Pulsed Electroacoustic Measurements, Zachary Gibson, J. R. Dennison

Journal Articles

The understanding of charge dynamics in dielectric materials is paramount in mitigating electrostatic discharge events for spacecraft. The most critical spacecraft charging events are found to result from incident electrons in the energy range of 10 keV to 50 keV. The charge embedded in dielectric materials in this energy range are deposited a distance into the material on the order of a few to tens of microns. One way to measure and understand the deposited charge is via pulsed electroacoustic measurements (PEA). However, the typical PEA spatial resolution of ~ 10 μm is not sufficient to resolve or discern charge …


The Derivation Of Sodium Density In The Mesosphere And Lower Thermosphere From The Na Lidar Photon Counting Profiles, Xiaoqi Xi Aug 2023

The Derivation Of Sodium Density In The Mesosphere And Lower Thermosphere From The Na Lidar Photon Counting Profiles, Xiaoqi Xi

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Derivation of Sodium (Na) number density from the Na lidar observations requires the in situ temperature and wind information because the absorption cross-section of the Na atom is a function of these dynamic parameters. The Na number density above ~ 110 km altitude was difficult to derive with the conventional algorithm, however. The standard output of the Na number density that utilizes the lidar-measured wind and temperature information falls short at ~ 110 km altitude and above due to the relatively large measurement uncertainties in the two critical parameters (low signal-to-noise ratio). Therefore, an innovative algorithm that may drive the …


Signatures Of Black Holes, Alexandra B. Chanson Aug 2023

Signatures Of Black Holes, Alexandra B. Chanson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In this defense I will describes three approaches to learn more about the relationship between the dynamics of black-holes and the distinctive signatures of a black hole systems: infinitesimal changes in the black hole background producing field excitations relating new fundamental black hole thermodynamic relations, mechanisms powering relativistic black hole jets and spontaneous symmetry breaking in five space-time dimensions, and physical signatures of black hole event horizons as conformal field theory duals (in both d=4,5 dimensional axisymmetric spacetimes).


Precise Determination Of Charge Distributions In Electron Irradiated Polymers Via Pulsed Electroacoustic Measurements With Applications To Spacecraft Charging, Zachary Gibson Aug 2023

Precise Determination Of Charge Distributions In Electron Irradiated Polymers Via Pulsed Electroacoustic Measurements With Applications To Spacecraft Charging, Zachary Gibson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Understanding how charge builds up and moves around in materials that are highly insulating, such as dielectrics, is important for many applications from power transmission to spacecraft charging. The leading cause of issues in spacecraft due to interactions with the space environment is spacecraft charging. That is, the accumulation of charge on insulating materials leads to arcing and sparking aboard the spacecraft. The most critical charging occurs due to electrons in a particular energy range of 10-50 keV. Electrons with these energies can travel 1’s to 10’s of microns into relevant materials. To measure where the charge is embedded and …


The Time-Dependent Ionospheric Model Using A Tec-Driven Servo: An Investigation Of The Capabilities And Limitations, Jenny Rebecca Whiteley Aug 2023

The Time-Dependent Ionospheric Model Using A Tec-Driven Servo: An Investigation Of The Capabilities And Limitations, Jenny Rebecca Whiteley

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The ionosphere is a region of the atmosphere with a high density of electrons. These electrons affect the behavior of any electromagnetic wave that passes through the ionosphere. Communication and geolocation systems, such as traditional radio and Global Positioning Systems, depend on emitted electromagnetic signals being picked up by a receiver. The presence of the ionosphere affects the behavior of the signal and the quality of the service. Hence, the interactions between electromagnetic waves and the ionosphere provide a major motivation to understand, research, and successfully model and predict the ionosphere and its physical phenomena. This study focused on determining …


Radon In Utah Homes, Madison Mackay May 2023

Radon In Utah Homes, Madison Mackay

Physics Capstone Projects

Radon gas can be found nearly everywhere. It is formed by the decay of radium, which is found in rocks, soil, plants, and animals. Radon gas can become trapped in buildings and is dangerous at high levels. It is particularly known to be high in many areas of the state of Utah. It is important for the average citizen in Utah to understand more about radon and what levels they may be exposed to. An experiment was done to try an alternate, faster method of testing for radon gas. This experiment was performed in several different locations in Utah. While …


Preparation, Characterization And Electron Yield Analysis On Highly Insulating Granular Particles, Heather Allen May 2023

Preparation, Characterization And Electron Yield Analysis On Highly Insulating Granular Particles, Heather Allen

Physics Capstone Projects

This study focuses on obtaining reliable electron yield measurements of highly insulating granular particles of various shape, size, and composition. Measurements of this kind have long been considered too difficult to collect on granular samples due to experimental complexities leading to a critical knowledge gap in the fundamental electrostatic behaviors of dust. A significant portion of this study was spent on preparing and characterizing granular samples before any type of measurement took place. Particles of varying sizes ranging from ~1 μm to ~100 μm, shapes including cubical, spherical, and angular, and composition including NaCl, MgO, Al2O3 and …


Engineering Lab Building Telescope Manual, Aidan L. Tueller May 2023

Engineering Lab Building Telescope Manual, Aidan L. Tueller

Physics Capstone Projects

In partnership with Dr. Jan Sojka, head of the Physics Department, a plan was created to make the telescope on top of the Engineering Lab building operational again for either staff, students, classes, or labs to use. The telescope was purchased through funds by Utah NASA Space Grant Consortium. This paper will contain basic information about how to operate the telescope and use its equipment. There is an online manual from Meade that is much longer but goes into much more detail about individual pieces and specific parts of the telescope.


Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton May 2023

Methods For Preparing And Characterizing Granular Materials For Electron Yield Measurements, Tom Keaton

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

This work presents a systematic study on sample preparation methods and accuracy of electron yield (EY) measurements of highly insulating, granular materials. EY measurements of highly insulating materials, especially those with high EY, are challenging due to the effects of sample charging even for very low fluence electron probe beams. EY measurements of particulates are complicated by: (i) roughness effects from particulate size, shape, coverage, and compactness; (ii) particle adhesion; (iii) substrate contributions; and (iv) electrostatic repulsion and potential barriers from charged particles and substrates. Numerous methods were explored to rigidly affix particles on conducting substrates at varying coverages for …


A Classification Of Tensors In Ecsk Theory, Joshua James Leiter May 2023

A Classification Of Tensors In Ecsk Theory, Joshua James Leiter

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

You might have heard of Einstein’s theory of General relativity (GR): it is the one where mass and energy curve the fabric of spacetime to create gravity. This is the major theory which allows communication through satellites and our GPS to work too! Wormholes have interested me, but there are some issues about forming them in GR. Interestingly enough, elementary particles are also characterized by their spin in the standard model. However, intrinsic spin is nowhere geometrically coupled to the geometry of spacetime in Einstein’s theory. Later, Élie Cartan, Dennis Sciama, and Tom Kibble all flushed out adding different aspects …


Metasurfaces For Holography, Scott Howell May 2023

Metasurfaces For Holography, Scott Howell

Physics Capstone Projects

Holography uses the interference of light waves to store information about an object, which can then be seen from different angles to create a partial 3D view. A simple experiment can be done using a laser diode, photographic plate, and a set of dice to create a holographic image. The holographic film is thin and can only hold a single image. Reflection holography can create a 3D diffraction pattern and allows more information to be packed into a single medium. Computer generated holograms can be designed to create holograms without a real object to be used in augmented reality. High …


Light Scattering From Periodic, Conducting Nanostructures, Wesley Kenneth Mills May 2023

Light Scattering From Periodic, Conducting Nanostructures, Wesley Kenneth Mills

Undergraduate Honors Capstone Projects

A material with broadband light absorbing capabilities has the potential for much usefulness in devices such as photovoltaics and thermoelectrics. By energy conservation, a non-transparent material with low reflectance will be highly absorbing. Thus, much research has been devoted to understanding what makes material having low reflectance across a wide wavelength spectrum.

The importance of a material’s electronic structure in determining reflectance is well-established. Current research is revealing the additional importance of surface architecture in the reflective properties of a material. A metasurface is a two-dimentional material with physical features at or smaller than the wavelength of light considered. These …


The Kp Index And Behavior Of Quiet Periods, Collette Walbeck Apr 2023

The Kp Index And Behavior Of Quiet Periods, Collette Walbeck

Physics Capstone Projects

The Kp-index quantifies the electromagnetic effects in the Earth’s atmosphere and is used in a variety of scientific fields. Higher Kp values tend to be the focus in these fields as they relate to high solar activity and geomagnetic storms. This study aimed to examine the significance, if any, of lower Kp indices. A simple data analysis was performed on continuous sequences of low Kp values, deemed Quiet Periods. Both the daily average of the values and the full set of Kp data were used. A decaying exponential relationship was discovered between the length of these periods and their frequencies …


High Frequency Radio Communication, Tyler Larsen Apr 2023

High Frequency Radio Communication, Tyler Larsen

Physics Capstone Projects

High frequency radio communication has been the most reliable form of communication for many decades. Over that period, we have learned and experienced times of enhanced signals along with complete radio blackouts. The purpose of this research is to collect and analyze radio signal data to see the evidence of various reasons as to why these phenomena occur. A radio antenna was set up at USU campus to retrieve the signals from beacon networks across the globe that transmit signals every 15 minutes. By tracking a few of these signals we can locate the times of discrepancies in the signals …


Effectiveness Of Multilayer Graded-Z Forms Of Radiation Shielding, Brinley Packer Apr 2023

Effectiveness Of Multilayer Graded-Z Forms Of Radiation Shielding, Brinley Packer

Physics Capstone Projects

This study explored how different forms of radiation shielding were more or less effective than standard single-layer shielding. Beta and gamma radiation sources were used and measured using a Geiger counter to determine how well the various forms of shielding protect against the radiation. The shielding effectiveness of standard homogeneous materials (e.g., graphite, carbon/epoxy composites, aluminum, and lead) of various thicknesses for different radiation sources was measured to provide standards for comparison. Once a basis of effective shielding was established, the study can go into greater depth into how to use shielding materials to be more effective, to better shield …


Telescope Restoration, Aidan Tueller Apr 2023

Telescope Restoration, Aidan Tueller

Student Research Symposium

In partnership with Dr. Jan Sojka, head of the Physics Department, a plan was created to make the telescope on top of the Engineering Lab building operational again for either staff, students, classes, or labs to use. The telescope was purchased through funds by Utah NASA Space Grant Consortium. This presentation will give a recap of how the restoration went and plans for future use of the telescope.


Relevancy Of Pulsed Electroacoustic Measurements For Investigating Spacecraft Charging, Zachary Gibson, J. R. Dennison Feb 2023

Relevancy Of Pulsed Electroacoustic Measurements For Investigating Spacecraft Charging, Zachary Gibson, J. R. Dennison

Journal Articles

The magnitude and spatial distribution of charge embedded in dielectric materials and the evolution of the charge distributions with time are paramount for the understanding and mitigation of spacecraft charging. Spacecraft materials are charged primarily by incident fluxes of low-energy electrons, with electron fluxes in the 10–50 keV range often responsible for the most deleterious arcing effects. While the pulsed electroacoustic (PEA) method can provide sensitive nondestructive measurements of the internal charge distribution in insulating materials, it has often been limited for spacecraft charging applications by typical spatial resolutions of ≤ 10 μm , with a 10- μm …


Space Environment Effects On The Electron Yields Of Ldef Thermal Control Coatings, Trace Taylor, Matthew Robertson, Heather Allen, Jr Dennison, Michael Guy, Emily Willis Feb 2023

Space Environment Effects On The Electron Yields Of Ldef Thermal Control Coatings, Trace Taylor, Matthew Robertson, Heather Allen, Jr Dennison, Michael Guy, Emily Willis

Journal Articles

Space-environment-induced degradation of white thermal control coatings from the Long Duration Exposure Facility (LDEF) was investigated. Much of the exterior of the LDEF was painted with a white thermal control coating, Aeroglaze A276; and most of the interior was coated with a black thermal control coating, Aeroglaze Z306. Outgassing from these coatings and other LDEF materials interacted with the white surface when exposed to sunlight after volatile materials condensed on the LDEF surfaces. Surface morphology was characterized by optical and scanning electron microscopies. Fourier-transform infrared spectroscopy and energy-dispersive x-ray spectroscopy were used to identify the chemical compounds and elements present …


Comparison Of Pulsed Electroacoustic Measurements And Af-Numit3 Modeling Of Polymers Irradiated With Monoenergetic Electrons, Zachary Gibson, J. R. Dennison, Brian Beecken, Ryan Hoffmann Feb 2023

Comparison Of Pulsed Electroacoustic Measurements And Af-Numit3 Modeling Of Polymers Irradiated With Monoenergetic Electrons, Zachary Gibson, J. R. Dennison, Brian Beecken, Ryan Hoffmann

Journal Articles

Successful spacecraft design and charging mitigation techniques require precise and accurate knowledge of charge deposition profiles. This paper compares models of charge deposition and transport using a venerable deep dielectric charging code, AF-NUMIT3, with direct measurements of charge profiles via pulsed electroacoustic (PEA) measurements. Eight different simulations were performed for comparison to PEA experiments of samples irradiated by 50 or 80 keV monoenergetic electrons in vacuum and at room temperature. Two materials, polyether-ether ketone (PEEK) and polytetrafluoroethylene (PTFE), were chosen for their very low conductivities so that minimal charge migration would occur between irradiation and PEA measurements. PEEK was found …


Characterizing The Charging Properties Of Lunar Dust Is Critical To Returning To The Moon, Heather Allen Jan 2023

Characterizing The Charging Properties Of Lunar Dust Is Critical To Returning To The Moon, Heather Allen

Research on Capitol Hill

Reliable electron yield (EY) measurements of highly insulating granular particles have long been considered too difficult to collect due the many experimental complexities that arise from the nature of the granular materials. This has led to a critical knowledge gap for both engineering strategies and basic science issues essential for myriad important space applications. This talk will emphasize the preliminary EY measurements of highly insulating granular samples we have collected, including a range of sasmples with typical particle size ranging from ~1 μm to ~100 μm, samples with cubical, spherical and highly angular particle shapes, studies of highly angular Al2O3 …


Grinding Cocoa Changes Chocolate Properties, Joseph Cooney Jan 2023

Grinding Cocoa Changes Chocolate Properties, Joseph Cooney

Research on Capitol Hill

This research studies how the viscoelastic properties of chocolate change through the 72-hour grinding process of chocolate manufacturing. Utah State University's Aggie Chocolate Factory produces chocolate from single-origin sources, each of which has a unique flavor, and thus a unique chemistry. This research explores the effects of grinding time on the viscoelasticity of each of these origins' chocolate types, including dark, sweet dark chocolate, and milk chocolate. Chocolate is a non-Newtonian fluid and therefore the Casson model (eq. 1) was used to obtain values for viscosity and yield stress, τ^(1/2)=τ_0^(1/2)+(η_PL y' )^(1/2) (1) Where τ is the shear stress measured …


Foundations Of Wave Phenomena: Complete Version, Charles G. Torre Jan 2023

Foundations Of Wave Phenomena: Complete Version, Charles G. Torre

Foundations of Wave Phenomena

This is the complete version of Foundations of Wave Phenomena. Version 8.3.1.


Please click here to explore the components of this work.


Effects Of Exposure To Atmospheric Humidity On Breakdown Field Strength Measurements Of Polymers, Megan Loveland Dewaal Dec 2022

Effects Of Exposure To Atmospheric Humidity On Breakdown Field Strength Measurements Of Polymers, Megan Loveland Dewaal

Physics Capstone Projects

This study investigates the effects of absorbed water introduced via exposure to atmospheric humidity on electrostatic breakdown field strength measurements of polymers. Conducting breakdown tests under sample conditions appropriate for different applications is essential. If the breakdown field strength is overestimated for an application, an insulator may be used inappropriately in high electric fields where they are more likely to break down. Comparisons are made between: sets of pristine samples, samples that underwent a thorough vacuum bake out to remove absorbed water, and samples subject to subsequent incremental prolonged atmospheric exposure. These investigated the effects of absorbed water and determined …