Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Selected Works

2016

Laser plasma acceleration

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

High-Flux Femtosecond X-Ray Emission From Controlled Generation Of Annular Electron Beams In A Laser Wakefield Accelerator, T. Z. Zhao, K. Behm, C. F. Dong, X. Davoine, Serge Y. Kalmykov, V. Petrov, Vladimir Chvykov, P. Cummings, B. Hou, Anatoly Maksimchuk, J. A. Nees, Victor Yanovsky, A. G. R. Thomas, Karl Krushelnick Aug 2016

High-Flux Femtosecond X-Ray Emission From Controlled Generation Of Annular Electron Beams In A Laser Wakefield Accelerator, T. Z. Zhao, K. Behm, C. F. Dong, X. Davoine, Serge Y. Kalmykov, V. Petrov, Vladimir Chvykov, P. Cummings, B. Hou, Anatoly Maksimchuk, J. A. Nees, Victor Yanovsky, A. G. R. Thomas, Karl Krushelnick

Serge Youri Kalmykov

Annular quasimonoenergetic electron beams with a mean energy in the range 200–400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and …


Controlled Generation Of Comb-Like Electron Beams In Plasma Channels For Polychromatic Inverse Thomson Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, I Ghebregziabher, R Lehe, A F. Lifschitz, B A. Shadwick Feb 2016

Controlled Generation Of Comb-Like Electron Beams In Plasma Channels For Polychromatic Inverse Thomson Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, I Ghebregziabher, R Lehe, A F. Lifschitz, B A. Shadwick

Serge Youri Kalmykov

Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth > 150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams - sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy …