Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher Aug 2017

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2-dimensional element of high practical importance. Despite its exceptional properties, graphene’s real applications in industrial or commercial products have been limited. There are many methods to produce graphene, but none has been successful in commercializing its production. Roll-to-roll plasma chemical vapor deposition (CVD) is used to manufacture graphene at large scale. In this research, we present a Bayesian linear regression model to predict the roll-to-roll plasma system’s electrode voltage and current; given a particular set of inputs. The inputs of the plasma system are power, pressure and concentration of gases; hydrogen, methane, oxygen, nitrogen and argon. This …


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics …


Nanoscale Semiconductor Materials And Devices Employing Hybrid 1d And 2d Structures For Tunable Electronic And Photonic Applications, Suprem Ranjan Das Oct 2013

Nanoscale Semiconductor Materials And Devices Employing Hybrid 1d And 2d Structures For Tunable Electronic And Photonic Applications, Suprem Ranjan Das

Open Access Dissertations

Das, Suprem R. Ph.D., Purdue University, December 2013. Nanoscale Semiconductor Materials and Devices employing Hybrid 1D and 2D structures for Tunable Electronic and Photonic Applications. Major Professor: Dr. David B. Janes.

Continued miniaturization of microelectronic devices over past decades has brought the device feature size towards the physical limit. Likewise, enormous `waste energy' in the form of self-heating in almost all of the electronic and optoelectronic devices needs an `energy-efficient low power' and `high performance' material as well as device with alternate geometry. III-V semiconductors are proven to be one of the alternate systems of materials for various applications including …