Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

External Link

Selected Works

2012

Magnetism

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Structures And Incommensurate Spin Excitations In Excess Oxygen-Doped La2cuo4+Y, Robert Birgeneau, Rebecca Christianson, Yasuo Endoh, Marc Kastner, Young Lee, Gen Shirane, Barrett Wells, Kazuyoshi Yamada Jul 2012

Structures And Incommensurate Spin Excitations In Excess Oxygen-Doped La2cuo4+Y, Robert Birgeneau, Rebecca Christianson, Yasuo Endoh, Marc Kastner, Young Lee, Gen Shirane, Barrett Wells, Kazuyoshi Yamada

Rebecca J. Christianson

Over the past decade, we have studied in detail the low-energy spin fluctuations in :a2−xSrxCuO4 for xbetween 0 and 0.18. Our experiments, as well as those by others, have revealed a fascinating interplay between the hole doping, the static and dynamic spin fluctuations and superconductivity. Recently, using electrochemical techniques, we have learned how to produce large single crystals of La2CuO4+y which are relatively homogenous. In this latter system, the dopants are characterized by annealed rather than quenched disorder. Furthermore, we have demonstrated staging behavior of the excess oxygen analogous to staging in intercalated graphite. We have now succeeded in carrying …


Electrically Controlled Magnetism, Christian Binek, Xi He, Yi Wang, S. Sahoo Mar 2012

Electrically Controlled Magnetism, Christian Binek, Xi He, Yi Wang, S. Sahoo

Christian Binek

Manipulation of magnetically ordered states by electrical means is a promising approach towards novel spintronics devices. We report on the electric control of surface magnetism in Cr2O3 thin films and uniaxial anisotropy in ferroelectric/ferromagnetic heterostructures, respectively. Artificial magnetoelectricity is realized in a BaTiO3/Fe heterostructure. Here, thermally induced coercivity changes of the Fe hysteresis loop are used to derive the stress imposed by the ferroelectric BaTiO3 substrate on the adjacent Fe film. Electrically induced coercivity changes give rise to a giant magnetoelectric susceptibility in the vicinity of the magnetic coercive field.