Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Kinetic Study Of Conjugated Polymer Packing And Agglomeration, Skye R. Travis May 2017

Kinetic Study Of Conjugated Polymer Packing And Agglomeration, Skye R. Travis

Honors Theses

Although organic electronic materials are flexible, cheap to fabricate, and molecularly tunable, their performance has generally been less efficient than that of their inorganic counterparts. Chemical doping has been attempted as a method to increase the efficiency of organic materials. During this process, an organic material, typically a conjugated polymer, is exposed to an oxidant/reductant, called a dopant. Electron transfer between host polymer and dopant molecules increases the charge carrier density in the doped host material, making it a more efficient conductor. The effects of doping using 2,3,5,6-tetrafluoro-tetracyanoquinodimethane (F4TCNQ) on low molecular weight poly(3-hexylthiophene-2,5-diyl) (LMW P3HT) in varying ratios of …


Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama Oct 2016

Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama

Masters Theses & Specialist Projects

Various synthetic methods have been developed to produce metal nanostructures including copper and iron nanostructures. Modification of nanoparticle surface to enhance their characteristic properties through surface functionalization with organic ligands ranging from small molecules to polymeric materials including organic semiconducting polymers is a key interest in nanoscience. However, most of the synthetic methods developed in the past depend widely on non-aqueous solvents, toxic reducing agents, and high temperature and high-pressure conditions. Therefore, to produce metal nanostructures and their nanocomposites with a simpler and greener method is indeed necessary and desirable for their nano-scale applications. Hence the objective of this thesis …


Enhancing The Photovoltaic Efficiency Of A Bulk Heterojunction Organic Solar Cell, Swapnil Ashok Sahare Apr 2016

Enhancing The Photovoltaic Efficiency Of A Bulk Heterojunction Organic Solar Cell, Swapnil Ashok Sahare

Masters Theses & Specialist Projects

Active layer morphology of polymer-based solar cells plays an important role in improving power conversion efficiency (PCE). In this thesis, the focus is to improve the device efficiency of polymer-based solar cells. In the first objective, active layer morphology of polymer-solar cells was optimized though a novel solvent annealing technique. The second objective was to explore the possibility of replacing the highly sensitive aluminum cathode layer with a low-cost and stable alternative, copper metal. Large scale manufacturing of these solar cells is also explored using roll-to-roll printing techniques.

Poly (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl (PCBM) were used as the …


Investigation Of Energy Alignment Models At Polymer Interfaces, Wenfeng Wang May 2014

Investigation Of Energy Alignment Models At Polymer Interfaces, Wenfeng Wang

USF Tampa Graduate Theses and Dissertations

The presented study investigated the Induced Density of Interface States (IDIS) model at different polymer interfaces by using photoemission spectroscopy in combination with electrospray deposition.

In recent years, organic electronics have attracted considerable attention due to their advantages of low-cost and easy-fabrication. The performance of such devices crucially depends on the energy barrier that controls the interface charge transfer. A significant effort has been made to explore the mechanisms that determine the direction and magnitude of charge transfer barriers in these devices. As a result of this effort, the IDIS model was developed to predict the energy alignment at metal/organic …


Using Two Different Approaches For The Creation Of Poly(3-Hexylthiophene)-Functionalized Siloxane Nanoparticles For Organic-Based Solar Cells, Nicholas A. Wright May 2012

Using Two Different Approaches For The Creation Of Poly(3-Hexylthiophene)-Functionalized Siloxane Nanoparticles For Organic-Based Solar Cells, Nicholas A. Wright

Mahurin Honors College Capstone Experience/Thesis Projects

Poly(3-hexylthiophene)-functionalized silsesquioxane nanoparticles were prepared from direct hydrolysis and condensation of P3HT-silane precursor using “grafting from” and “grafting to” methods. The size, shape, and surface morphology of these polymer grafts particles were visualized using transmission electron microscopy and scanning electron microscopy. Their compositions confirmed by FTIR, thermogravimetric analysis and elemental analysis. The XRD analysis revealed the polymer orientation and packing pattern of the nanocomposites, indicating the highly ordered lamella stacks of P3HT polymer chains. The photovoltaic performance of the blends of P3HT-nanohybrid with the C60 derivative PCBM was evaluated upon annealation in different temperatures, ranging from 50°C to 150 °C. …