Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Carbon Dioxide-Induced Corrosion Of Aisi 4140 Steel In Acidified Artificial Geothermal Brine, Anawati Anawati, Rayhan Izzat, Riene Kaelamanda Pragitta, Rafli Ihsan Hernandi Mar 2023

Carbon Dioxide-Induced Corrosion Of Aisi 4140 Steel In Acidified Artificial Geothermal Brine, Anawati Anawati, Rayhan Izzat, Riene Kaelamanda Pragitta, Rafli Ihsan Hernandi

Makara Journal of Science

Carbon dioxide (CO2)-induced corrosion often occurs in the structural materials of geothermal industry. The presence of CO2 influences the formation of various corrosion products. This research investigates the effect of dissolved CO2 in acidic brines on the corrosion behavior of AISI 4140 steel at atmospheric pressure. The brines were the standard brine, Ca-free brine, and high-salinity brine. The corrosion behavior was studied using electrochemical and immersion tests. A cyclic polarization test showed that the corrosion rate was higher in dissolved CO2 brine than in non-CO2 brine, and an immersion test demonstrated a similar result. …


Calculating The Observable Properties Of Mass Accreting Black Holes, Heather Lee Jan 2016

Calculating The Observable Properties Of Mass Accreting Black Holes, Heather Lee

Undergraduate Research Symposium Posters

My goal is to generalize Chandrasekhar’s formulas to include partial Rayleigh Scattering. In my summer research, I successfully recalculated key tables and solutions from his book and I am working in generalizing his results for use in an infinitely deep electron atmosphere. Here, I will summarize how Chandrasekhar derived his formulas and how to potentially generalize them to include absorption.


Polarization Charge Density In Strained Graphene, Noah Wilson Jan 2016

Polarization Charge Density In Strained Graphene, Noah Wilson

Graduate College Dissertations and Theses

Graphene, the world's first truly two-dimensional material, is unique for having an electronic structure described by an effective Lorentz invariant theory. One important consequence is that the ratio or Coulomb energy to kinetic energy is a constant, depending only on conditions within the lattice rather than on the average charge density as in a typical Galilean invariant material. Given this unusual property, a natural question would be how do phenomena, such as screening of a Coulomb impurity, happen in graphene? Moreover, how does the addition of uniaxial strain enhance or diminish this behavior? Here I discuss our work to calculate …


Adherent Cells Avoid Polarization Gradients On Periodically Poled Litao3 Ferroelectrics, Christof Christophis, Elisabetta Ada Cavalcanti-Adam, Maximilian Hanke, Kenji Kitamura, Alexei Gruverman, Michael Grunze, Peter A. Dowben, Axel Rosenhahn Jan 2013

Adherent Cells Avoid Polarization Gradients On Periodically Poled Litao3 Ferroelectrics, Christof Christophis, Elisabetta Ada Cavalcanti-Adam, Maximilian Hanke, Kenji Kitamura, Alexei Gruverman, Michael Grunze, Peter A. Dowben, Axel Rosenhahn

Peter Dowben Publications

The response of fibroblast cells to periodically poled LiTaO3 ferroelectric crystals has been studied. While fibroblast cells do not show morphological differences on the two polarization directions, they show a tendency to avoid the field gradients that occur between polarization domains of the ferroelectric. The response to the field gradients is fully established after one hour, a time at which fibroblasts form their first focal contacts. If suspension cells, with a lower tendency to establish strong surface contacts are used, no influence of the field gradients is observed.


Excitation Of Radiative Polaritons By Polarized Broadband Infrared Radiation In Thin Oxide Films Deposited By Atomic Layer Deposition, Anita J. Vincent-Johnson, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel Jan 2013

Excitation Of Radiative Polaritons By Polarized Broadband Infrared Radiation In Thin Oxide Films Deposited By Atomic Layer Deposition, Anita J. Vincent-Johnson, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel

Department of Physics and Astronomy - Faculty Scholarship

This work contributes to the understanding of infrared radiation interaction with matter and its absorption for energy harvesting purposes. By exciting radiative polaritons in thin oxide filmswith polarized infrared radiation, a further evidence is collected that a link exists between radiative polaritons and the heat recovery mechanism hypothesized in previous research. In the voltage transient occurring when the infrared radiation is turned on, the observed time necessary to reach the maximum voltage and the voltage intensity versus angle of incidence exhibit a mismatch when generated by polarized and nonpolarized infrared radiation. The existence of collective charge oscillation modes in the …


High Resolution Solar Observations From First Principles To Applications, Angelo P. Verdoni Aug 2009

High Resolution Solar Observations From First Principles To Applications, Angelo P. Verdoni

Dissertations

The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already …