Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Predicted Deepwater Bathymetry From Satellite Altimetry: Non-Fourier Transform Alternatives, Maxsimo Salazar Dec 2018

Predicted Deepwater Bathymetry From Satellite Altimetry: Non-Fourier Transform Alternatives, Maxsimo Salazar

Dissertations

Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational potential anomalies caused by uneven, non-uniform layers of material. This important calculation relates the gravitational potential anomaly to sea-floor topography. As outlined by Sandwell and Smith (1997), a six-step procedure, utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid height are inverted into seafloor topography. However, FTs are not local in space and produce Gibb’s phenomenon around discontinuities. Seafloor features exhibit spatial locality and features such as seamounts and ridges often have sharp inclines. Initial tests compared the windowed-FT to wavelets in reconstruction of …


Spectrally Based Bathymetric Mapping Of A Dynamic, Sandbedded Channel: Niobrara River, Nebraska, Usa, E. Dilbone, C.J. Legleiter, J.S. Alexander, B. Mcelroy Feb 2018

Spectrally Based Bathymetric Mapping Of A Dynamic, Sandbedded Channel: Niobrara River, Nebraska, Usa, E. Dilbone, C.J. Legleiter, J.S. Alexander, B. Mcelroy

United States Geological Survey: Staff Publications

Methods for spectrally based mapping of river bathymetry have been developed and tested in clear‐flowing, gravel‐bed channels, with limited application to turbid, sandbed rivers. This study used hyperspectral images and field surveys from the dynamic, sandy Niobrara River to evaluate three depth retrieval methods. The first regressionbased approach, optimal band ratio analysis (OBRA), paired in situ depth measurements with image pixel values to estimate depth. The second approach used ground‐based field spectra to calibrate an OBRA relationship. The third technique, image‐to‐depth quantile transformation (IDQT), estimated depth by linking the cumulative distribution function (CDF) of depth to the CDF of an …