Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Modeling Surface Structures For The Capture Of Carbon Dioxide, Paige Freyre May 2023

Modeling Surface Structures For The Capture Of Carbon Dioxide, Paige Freyre

Honors Theses

Our research utilized a modified graphene surface model to simulate capture of carbon dioxide and nitrogen gas based on van der Waals forces and hydrogen bonding. We completed an extensive review of the literature for model and experimental surfaces used to trap carbon dioxide and nitrogen gas into structures and pores with varying functional groups, pore sizes, and pore structures. We replicated the design of selected published models and compared their and our calculated binding energies. We used Scigress (Fujitsu) software with the Molecular Mechanics MM3 parameter set to perform calculations to analyze a proposed graphene surface pore lined with …


Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield May 2023

Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield

Honors Theses

HIV-1 is a retroviral disease that infects CD4+ T cells in the body. Once inside the body, HIV-1 uses human cell machinery to replicate and reproduce using several enzymes to reverse transcribe viral RNA to DNA and integrate the viral DNA into the human genome to reproduce. Several drugs, such as NRTIs, INSTIs, NNRTIs, and PIs, have been created to inhibit specific parts of the viral life cycle and are used in combination to fight HIV-1. However, these medications face challenges of viral mutation and resistance, which increases the importance of creating more potent and effective drugs. Recently, a new …


Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield May 2023

Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield

Honors Theses

HIV-1 is a retroviral disease that infects CD4+ T cells in the body. Once inside the body, HIV-1 uses human cell machinery to replicate and reproduce using several enzymes to reverse transcribe viral RNA to DNA and integrate the viral DNA into the human genome to reproduce. Several drugs, such as NRTIs, INSTIs, NNRTIs, and PIs, have been created to inhibit specific parts of the viral life cycle and are used in combination to fight HIV-1. However, these medications face challenges of viral mutation and resistance, which increases the importance of creating more potent and effective drugs. Recently, a new …