Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks Dec 2017

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks

Doctoral Dissertations

Phosphorylated myo-inositol compounds including inositol phosphates (InsPs) as well as the phosphatidylinositol polyphosphate lipids (PIPns) are critical biomolecules that regulate many of the most important biological processes and pathways. They are aberrant in many disease states due to their regulatory function. The same is true of the phospholipid phosphatidylserine (PS) which can serve as a marker to begin apoptosis. However, the full scope of activities of these structures is not clear, particularly since techniques that enable global detection and analysis of the production of these compounds spatially and temporally are lacking. With all of these obstacles in …


Development And Implementation Of Redox-Active Olefin Polymerization Catalysts, William Curtis Anderson Jr. Dec 2017

Development And Implementation Of Redox-Active Olefin Polymerization Catalysts, William Curtis Anderson Jr.

Doctoral Dissertations

Investigating homogeneous polymerization catalysts has been a thriving area of chemistry in the academic realm for several decades now, and has helped drive the development of a range of materials, from designer plastics to cheap commodity polymers. Billions of pounds of these materials are produced every year, which ensures that continuing research in the area will be necessary to improve current processes and enable more economic use of our resources.

This dissertation showcases the Long group’s research in homogeneous polymerization catalysis and our impact on the field thus far. We show that intelligent design of redox-active catalysts allows for a …


Design-Structure-Property Relationships Of Purine-Based Copolymers And Chromophores, Graham Smith Collier May 2017

Design-Structure-Property Relationships Of Purine-Based Copolymers And Chromophores, Graham Smith Collier

Doctoral Dissertations

Understanding the relationship between monomer design and polymer properties is imperative for developing polymeric systems that can find applicability in targeted technologies. Purines have been extensively studied across many scientific disciplines and are useful due to the diverse properties they possess, which is due in part to the broad scope of precise synthetic transformations that are used to tailor their properties. The overarching goal of my dissertation involves developing the synthesis of “poly(purine)s” and investigating the effect of purine monomer design on polymer properties. In this vein, poly(purine)s and purine-based donor-acceptor small-molecules are synthesized via Stille cross-coupling reactions with a …


Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown May 2017

Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown

Doctoral Dissertations

The development of homogenous single-site catalysts has significantly impacted the field of organometallic chemistry. The well-defined structures of homogenous catalysts make it less cumbersome to understand and develop methods to tailor these compounds for specific catalytic processes. Currently, polymerization catalysis is a major division in organometallic chemistry due to the global demand for polymeric materials such as polyethylene (PE) and polypropylene (PP), based on their low-cost feedstock, remarkable mechanical properties, and their use in a wide range of applications. However, bioplastics have become a highly sought-after alternative to conventional petrochemical-based plastics due to their biodegradability and derivatization from renewable resources. …


Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki May 2017

Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki

Doctoral Dissertations

Polymer membranes are a valuable tool for separating components of liquid and gas mixtures. Heavily inspired by biological systems, the idea of using the intrinsic properties of polymers to perform otherwise energy-intensive tasks is attractive for applications such as water desalination, natural gas sweetening, and post-combustion carbon capture. Of particular interest to our research group, post-combustion carbon capture is a promising potential solution aimed at reducing the carbon footprint involved with production, transportation, and storage of electrical energy generation.

Every year, the United States produces close to seven billion metric tons of carbon dioxide, of which a significant portion is …


Ion Separations: Achieving Selectivity Through Rational Design In Solvent Extraction And Crystallization Systems, Neil Justin Williams May 2017

Ion Separations: Achieving Selectivity Through Rational Design In Solvent Extraction And Crystallization Systems, Neil Justin Williams

Doctoral Dissertations

The selective separation of ions from aqueous solutions has been a difficult challenge to address in the separation sciences. The difficulties associated with selective separations of ions are due to a multitude of chemical and physical differences between them. Additionally, the term ions encompass both positively charged cations and their counter parts the negatively charge anions. The work covered in this dissertation discusses the difficulties encountered during the selective separation of both oxoanions and cations. Apart from the Introduction Chapter 1 and Conclusion Chapter 10, the selective separations oxoanions and cations will be discussed separately with the dissertation being …


All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu May 2017

All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu

Doctoral Dissertations

Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processability, low production cost and distinct performance. Compared to the widely-used styrenic TPEs, acrylate based TPEs have potential advantages including exceptional chemical, heat, oxygen and UV resistance, optical transparence, and oil resistance. However, their high entanglement molecular weight lead to “disappointing” mechanical performance as compared to styrenic TPEs. The work described in this dissertation is aimed at employing various approaches to develop the all acrylic based thermoplastic elastomers with improved mechanical performance.

The first part of this work focuses on the introduction of acrylic polymers with high glass …