Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Organic Chemistry

University of Arkansas, Fayetteville

Nanotechnology

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki Dec 2021

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki

Graduate Theses and Dissertations

Developing methodologies to control the architecture of nanoparticles (NPs) at the atomic level prevents their inhomogeneity and leads to a variety of expected functions. Rationally designed nanoparticles can either be programmed or crystallized structures into pre-determined structures achieving tunable particle pore size and physiochemistry. In this dissertation, two broad classes of multifunctional nanoparticles are developed, metal-organic frameworks and DNA-NP aggregates.

Metal-organic frameworks are a novel class of highly porous crystalline materials built from organic linkers and metal cluster-based secondary building units. However, applications in bioremediation have not been developed very well especially in applications regarding drug delivery systems (DDS). The …


Influence Of Shelling Temperature And Time On The Optical And Structural Properties Of Cuins2/Zns Quantum Dots, Colette Robinson Dec 2015

Influence Of Shelling Temperature And Time On The Optical And Structural Properties Of Cuins2/Zns Quantum Dots, Colette Robinson

Graduate Theses and Dissertations

CIS/ZnS core/shell QDs are an important class of nanomaterials for optoelectronic, photovoltaic and photoluminescence applications. They consist of lower toxicity materials than the prototypical II-VI Cd-based QDs and show long fluorescence lifetimes, which generates prospective in biological imaging applications. It is vital to develop reproducible synthetic methods for this new class of nanomaterials in order to maintain small sizes with high QYs. CIS core QDs have been shelled with ZnS at various temperatures from 90-210°C for reaction times ranging from 20-140 minutes to examine the role of thermodynamics and kinetics on the shell growth. Using HR-TEM and ICP-MS, it was …