Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Oil, Gas, and Energy

Wayne State University

Theses/Dissertations

Lithium ion battery

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Ac Conductivity Studies Of Polyethylene-Oxide-Garnet Type Li7la3zr2o12 Hybrid Composite Solid Polymer Electrolyte For Li-Ion Battery, Parisa Bashiri Jan 2020

Ac Conductivity Studies Of Polyethylene-Oxide-Garnet Type Li7la3zr2o12 Hybrid Composite Solid Polymer Electrolyte For Li-Ion Battery, Parisa Bashiri

Wayne State University Dissertations

Solid electrolytes including ceramics and polymers are considered to be the ultimate substitute for organic liquid electrolytes currently used in commercialized lithium ion batteries to address the safety concerns due to Li dendrite growth and internal short circuiting. However, low ionic conductivity due to high grain boundary resistance in ceramics and semi-crystalline nature of polymers has held back the solid electrolytes from being used in Li-ion batteries. Polyethylene oxide (PEO), complexed with a Li-salt, is a well-studied polymer electrolyte showing ionic conductivity properties at room temperature. However, the coexistence of amorphous and crystalline regions at room temperature (< Tm, the melting temperature) has

-8 -6 …


Characterization, Modeling, And Thermal Management Of High-Performance Lithium Batteries, Minjun Bae Jan 2020

Characterization, Modeling, And Thermal Management Of High-Performance Lithium Batteries, Minjun Bae

Wayne State University Theses

Lithium-ion (Li-ion) batteries, as one of the most advanced commercial rechargeable batteries, play a crucial role in modern society as they are extensively used in portable electronic devices. Nevertheless, the limited electrochemical performance and poor thermal management systems of Li-ion batteries have hindered the expansion of their future applications. In search of alternative electrode materials to develop a battery with higher electrochemical performance, lithium (Li) metal has attracted much attention as an ideal alternative anode material due to its high specific capacity and lowest redox potential. However, needle-like Li dendritic growth causes severe safety concerns and thus prohibits practical applications …


Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu Jan 2016

Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu

Wayne State University Dissertations

Lithium-ion batteries (LIBs) are currently the dominant powder source for personal computers and portable electronics. LIBs also play important roles in larger-scale applications, including electric drive vehicles (EVs, HEVs) and grid-energy storage. To meet the increasing demand for energy storage, it is very urgent and crucial to develop next-generation LIBs using alternative electrode materials. For example, carbon is still exclusively used as anode materials in current LIBs. However, the theoretical capacity of graphite (372 mA h g–1 based on LiC6) has almost been achieved, and it becomes one of the bottlenecks to further increase the energy density of LIBs based …


Development Of Silicon-Based Anodes And In-Situ Characterization Techniques For Lithium Ion Batteries, Jinho Yang Jan 2014

Development Of Silicon-Based Anodes And In-Situ Characterization Techniques For Lithium Ion Batteries, Jinho Yang

Wayne State University Dissertations

Development of lithium ion batteries (LIBs) with higher capacity has been booming worldwide, as growing concerns about environmental issues and increasing petroleum costs. The demands for the LIBs include high energy and power densities, and better cyclic stability in order to meet a wide range of applications, such as portable devices and electric vehicles. Silicon has recently been explored as a promising anode material due to its low discharge potential (<0.4 V) and high specific capacity (4200 mAh g-1). The capacity of silicon potentially exceeds more than 10 times of the conventional graphite anode (372 mAh g-1). However, the silicon anode experiences huge volume …


Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman Jan 2013

Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman

Wayne State University Dissertations

The ever evolving technological applications such as with portable electronics and electric vehicles have led to increasing energy demands that have proven the existing commercial LIB capacity insufficient. Recently, the most promising anode material to substitute the traditional graphite is Si. As an anode Si has low discharge potential and theoretical the highest known theoretical capacity (>10 fold of graphite). However, due to the increased accommodated Li+ during charge-discharge reactions, silicon's volume varies up to 400%, causing pulverization and loss of electrical contact.

This dissertation focuses on a systematic approach in developing effective means to utilize Si for improved …