Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Application Of Machine Learning To Predict The Performance Of An Emipg Reactor Using Data From Numerical Simulations, Owen Sedej, Eric G. Mbonimpa, Trevor Sleight, Jeremy Slagley Mar 2022

Application Of Machine Learning To Predict The Performance Of An Emipg Reactor Using Data From Numerical Simulations, Owen Sedej, Eric G. Mbonimpa, Trevor Sleight, Jeremy Slagley

Faculty Publications

Microwave-driven plasma gasification technology has the potential to produce clean energy from municipal and industrial solid wastes. It can generate temperatures above 2000 K (as high as 30,000 K) in a reactor, leading to complete combustion and reduction of toxic byproducts. Characterizing complex processes inside such a system is however challenging. In previous studies, simulations using computational fluid dynamics (CFD) produced reproducible results, but the simulations are tedious and involve assumptions. In this study, we propose machine-learning models that can be used in tandem with CFD, to accelerate high-fidelity fluid simulation, improve turbulence modeling, and enhance reduced-order models. A two-dimensional …


The Traded Water Footprint Of Global Energy From 2010 To 2018, Christopher M. Chini, Rebecca A. M. Peer Jan 2021

The Traded Water Footprint Of Global Energy From 2010 To 2018, Christopher M. Chini, Rebecca A. M. Peer

Faculty Publications

The energy-water nexus describes the requirement of water-for-energy and energy-for-water. The consumption of water in the production and generation of energy resources is also deemed virtual water. Pairing the virtual water estimates for energy with international trade data creates a virtual water trade network, facilitating analysis of global water resources management. In this database, we identify the virtual water footprints for the trade of eleven different energy commodities including fossil fuels, biomass, and electricity. Additionally, we provide the necessary scripts for downloading and pairing trade data with the virtual water footprints to create a virtual water trade network. The resulting …


An Integrated Assessment Of The Global Virtual Water Trade Network Of Energy, Rebecca A. M. Peer, Christopher M. Chini Nov 2020

An Integrated Assessment Of The Global Virtual Water Trade Network Of Energy, Rebecca A. M. Peer, Christopher M. Chini

Faculty Publications

The global trade of energy allows for the distribution of the world's collective energy resources and, therefore, an increase in energy access. However, this network of trade also generates a network of virtually traded resources that have been used to produce energy commodities. An integrated database of energy trade water footprints is necessary to capture interrelated energy and water concerns of a globalized economy,and is also motivated by current climate and population trends. Here, we quantify and present the virtual water embedded in energy trade across the globe from 2012 to 2018, building on previous water footprinting and energy virtual …


Effects Of Temperature And Antioxidants On The Oxidation Of Biodiesel Derived From Waste Vegetable Oil, Randy L. Maglinao, Torrey J. Wagner, Keegan Duff Jun 2020

Effects Of Temperature And Antioxidants On The Oxidation Of Biodiesel Derived From Waste Vegetable Oil, Randy L. Maglinao, Torrey J. Wagner, Keegan Duff

Faculty Publications

Biodiesel offers several environmental benefits and improvements to some fuel performance properties, but its poor oxidative stability has been a major concern. Currently, the accepted practice to improve biodiesel oxidative stability is the addition of antioxidants; numerous antioxidants have been studied but their effectiveness in inhibiting biodiesel oxidation is difficult to predict due to variation with resonance stability, solubility, reactivity, and volatility. To improve prediction efforts, this study explored the Rapid Small-Scale Oxidation Test (RSSOT) as a means to investigate how biodiesel oxidation is affected by antioxidant concentration and temperature, and compared its results with the oxidative stability index test. …


Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt Jun 2019

Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt

Faculty Publications

This research presents the development of linear regression models to predict horizontal photovoltaic power output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate …


Using Wind And Hydro Power To Sustain The Off-Grid Power Supply For A 50' Cruising Sailboat, Keisha Meyer, Torrey J. Wagner, Jada Williams May 2019

Using Wind And Hydro Power To Sustain The Off-Grid Power Supply For A 50' Cruising Sailboat, Keisha Meyer, Torrey J. Wagner, Jada Williams

Faculty Publications

Cruising sailboats operate with a power requirement modest enough to operate mostly or completely on renewable energy technology sources. Cruisers without renewable energy systems use the vessel’s diesel engine to charge the boat’s batteries; if the systems are operated at anchor, this dramatically decreases the time before the engine needs major overhaul. System users estimate a diesel engine can run approximately 8,000 hours underway before needing major overhaul, whereas operating 500 hours at anchor produces similar wear and tear on engine pistons. Although renewable energy systems have a high initial capital cost, these systems can provide the vessel’s electrical system …


Austere Location Wind Turbine Energy System Analysis, Lukas Cowen, Douglas S. Dudis, Torrey J. Wagner Apr 2019

Austere Location Wind Turbine Energy System Analysis, Lukas Cowen, Douglas S. Dudis, Torrey J. Wagner

Faculty Publications

One promising technology to combat an energy shortage in austere locations is wind energy. In combination with battery storage and generator backup, we explore the feasibility of using a hybrid energy system to reduce the volume of diesel fuel required. Modeling the energy demands in austere locations will enable missions in remote settings to optimize their energy costs, increased their energy resiliency and assure their supply. For a modeled time-series energy requirement that varied between 2.4 MW and 5.1 MW, the optimal wind system size was 9.9 MW of installed wind power paired with a 741 kWh battery. Assuming an …


36% Reduction In Fuel Resupply Using A Hybrid Generator & Battery System For An Austere Location, David J. Chester [*], Torrey J. Wagner, Douglas S. Dudis Mar 2019

36% Reduction In Fuel Resupply Using A Hybrid Generator & Battery System For An Austere Location, David J. Chester [*], Torrey J. Wagner, Douglas S. Dudis

Faculty Publications

The DOD energy policy is to increase energy security resiliency, and mitigate costs in the use and management of energy[1] Forward operating bases (FOBs) are remote, austere base camps that support an operationally defined mission with a limited or no ability to draw from an energy grid and have historically relied on diesel-powered generators for the primary production of energy.[2] Generators are sized to meet a theoretical peak demand, but steady state loads are far below this peak, resulting in under-loaded generators.[3] Under-loaded diesel generators decrease efficiency and increase the need for maintenance, affecting the lifespan of …


Measuring Leak Rates From Abandoned Natural Gas Wells In Western Pennsylvania, John Bradshaw, Jeremy M. Slagley, Nicole Iannacchione, Matthew Lees Jan 2018

Measuring Leak Rates From Abandoned Natural Gas Wells In Western Pennsylvania, John Bradshaw, Jeremy M. Slagley, Nicole Iannacchione, Matthew Lees

Faculty Publications

The proliferation of unconventional natural gas drilling has brought considerable recent attention to the possible impacts that this new technology may have on greenhouse gas emissions. In Pennsylvania, estimates of these possible impacts are very difficult to accurately assess in large part due to the highly uncertain contribution from legacy abandoned and orphaned gas (AOG) wells. This paper outlines our work in establishing a methodology for measuring the methane leak rate from AOG wells in Western Pennsylvania. The theory and methodology of an enclosure method for measuring the methane mass leak rate from one AOG natural gas well is described. …