Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

Publications

Mountain waves

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

3d Numerical Simulation Of Secondary Wave Generation From Mountain Wave Breaking Over Europe, Christopher J. Heale, Katrina Bossert, Sharon L. Vadas Feb 2022

3d Numerical Simulation Of Secondary Wave Generation From Mountain Wave Breaking Over Europe, Christopher J. Heale, Katrina Bossert, Sharon L. Vadas

Publications

In this paper, we simulate an observed mountain wave event over central Europe and investigate the subsequent generation, propagation, phase speeds and spatial scales, and momentum deposition of secondary waves under three different tidal wind conditions. We find the mountain wave breaks just below the lowest critical level in the mesosphere. As the mountain wave breaks, it extends outwards along the phases and fluid associated with the breaking flows downstream of its original location by 500–1,000 km. The breaking generates a broad range of secondary waves with horizontal scales ranging from the mountain wave instability scales (20–300 km), to multiples …


Momentum Flux Spectra Of A Mountain Wave Event Over New Zealand, Katrina Bossert, David C. Fritts, Christopher J. Heale, Stephen D. Eckermann, John M. C. Plane, Jonathan B. Snively, Bifford P. Williams, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon Sep 2018

Momentum Flux Spectra Of A Mountain Wave Event Over New Zealand, Katrina Bossert, David C. Fritts, Christopher J. Heale, Stephen D. Eckermann, John M. C. Plane, Jonathan B. Snively, Bifford P. Williams, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. Mackinnon

Publications

During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 13 July 2014 research flight over the South Island of New Zealand, a multiscale spectrum of mountain waves (MWs) was observed. High-resolution measurements of sodium densities were available from ~70 to 100 km for the duration of this flight. A comprehensive technique is presented for obtaining temperature perturbations, T′, from sodium mixing ratios over a range of altitudes, and these T′ were used to calculate the momentum flux (MF) spectra with respect to horizontal wavelengths, λH, for each flight segment. Spectral analysis revealed MWs with spectral power centered at λH of ~80, …


Secondary Gravity Wave Generation Over New Zealand During The Deepwave Campaign, Katrina Bossert, Christopher G. Kruse, Christopher J. Heale, David C. Fritts, Bifford P. Williams, Jonathan B. Snively, Pierre-Dominique Pautet, Michael J. Taylor Aug 2017

Secondary Gravity Wave Generation Over New Zealand During The Deepwave Campaign, Katrina Bossert, Christopher G. Kruse, Christopher J. Heale, David C. Fritts, Bifford P. Williams, Jonathan B. Snively, Pierre-Dominique Pautet, Michael J. Taylor

Publications

Multiple events during the Deep Propagating Gravity Wave Experiment measurement program revealed mountain wave (MW) breaking at multiple altitudes over the Southern Island of New Zealand. These events were measured during several research flights from the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft, utilizing a Rayleigh lidar, an Na lidar, and an Advanced Mesospheric Temperature Mapper simultaneously. A flight on 29 June 2014 observed MWs with horizontal wavelengths of ~80–120 km breaking in the stratosphere from ~10 to 50 km altitude. A flight on 13 July 2014 observed a horizontal wavelength of ~200–240 km MW extending from …


Numerical Modeling Of A Multiscale Gravity Wave Event And Its Airglow Signatures Over Mount Cook, New Zealand, During The Deepwave Campaign, C. J. Heale, K. Bossert, J. B. Snively, D. C. Fritts, P. -D. Pautet, M. J. Taylor Jan 2017

Numerical Modeling Of A Multiscale Gravity Wave Event And Its Airglow Signatures Over Mount Cook, New Zealand, During The Deepwave Campaign, C. J. Heale, K. Bossert, J. B. Snively, D. C. Fritts, P. -D. Pautet, M. J. Taylor

Publications

A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a �x = 200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25–28 km) waves within the warm phase of the large mountain wave. The …


Dynamics Of Orographic Gravity Waves Observed In The Mesosphere Over Auckland Islands During The Deep Propagating Gravity Wave Experiment (Deepwave), Stephen D. Eckermann, Dave Broutman, Jun Ma, James D. Doyle, Pierre-Dominique Pautet, Michael J. Taylor, Katrina Bossert, Bifford P. Williams, David C. Fritts, Ronald B. Smith Sep 2016

Dynamics Of Orographic Gravity Waves Observed In The Mesosphere Over Auckland Islands During The Deep Propagating Gravity Wave Experiment (Deepwave), Stephen D. Eckermann, Dave Broutman, Jun Ma, James D. Doyle, Pierre-Dominique Pautet, Michael J. Taylor, Katrina Bossert, Bifford P. Williams, David C. Fritts, Ronald B. Smith

Publications

On 14 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), aircraft remote sensing instruments detected large-amplitude gravity wave oscillations within mesospheric airglow and sodium layers at altitudes z ~ 78–83 km downstream of the Auckland Islands, located ~1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event. At 0700 UTC when the first observations were made, surface flow across the islands’ terrain generated linear three-dimensional wave fields that propagated rapidly to z ~ 78 km, where intense breaking occurred in a narrow …