Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

Chapman University

2021

Hydrology

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

California Drought Outlooks Based On Climate Change Models’ Effects On Water Availability, Lauren Lynam, Thomas Piechota Nov 2021

California Drought Outlooks Based On Climate Change Models’ Effects On Water Availability, Lauren Lynam, Thomas Piechota

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Future streamflow in California is evaluated based on eight climate projections models and the effects on water availability. The unimpaired projected streamflow for eleven California rivers, collected from Cal-Adapt, are compared with unimpaired historical flows (1950–2015) using eight climate model projections (2020–2099) identified as representative as possible future scenarios; Warm Dry RCP 4.5, Average RCP 4.5, Cool Wet RCP 4.5, Other RCP 4.5, Warm Dry RCP 8.5, Average RCP 8.5, Cool Wet RCP 8.5, and Other RCP 8.5. Projected drought deficits (or magnitudes), durations, and intensities are statistically tested against historical values to determine significance of differences between past streamflow …


Hydrological Feedbacks On Peatland Ch4 Emission Under Warming And Elevated Co2: A Modeling Study, Fenghui Yuan, Yihui Wang, Daniel M. Ricciuto, Xiaoying Shi, Fengming Yuan, Thomas Brehme, Scott Bridgham, Jason Keller, Jeffrey M. Warren, Natalie A. Griffiths, Stephen D. Sebestyen, Paul J. Hanson, Peter E. Thornton, Xiaofeng Xu Nov 2021

Hydrological Feedbacks On Peatland Ch4 Emission Under Warming And Elevated Co2: A Modeling Study, Fenghui Yuan, Yihui Wang, Daniel M. Ricciuto, Xiaoying Shi, Fengming Yuan, Thomas Brehme, Scott Bridgham, Jason Keller, Jeffrey M. Warren, Natalie A. Griffiths, Stephen D. Sebestyen, Paul J. Hanson, Peter E. Thornton, Xiaofeng Xu

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatland carbon cycling is critical for the land–atmosphere exchange of greenhouse gases, particularly under changing environments. Warming and elevated atmospheric carbon dioxide (eCO2) concentrations directly enhance peatland methane (CH4) emission, and indirectly affect CH4 processes by altering hydrological conditions. An ecosystem model ELM-SPRUCE, the land model of the E3SM model, was used to understand the hydrological feedback mechanisms on CH4 emission in a temperate peatland under a warming gradient and eCO2 treatments. We found that the water table level was a critical regulator of hydrological feedbacks that affect peatland CH4 dynamics; the …