Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Meta-Analysis Reveals Complex Marine Biological Responses To The Interactive Effects Of Ocean Acidification And Warming, Ben P. Harvey, Dylan Gwynn-Jones, Philippa J. Moore Jan 2013

Meta-Analysis Reveals Complex Marine Biological Responses To The Interactive Effects Of Ocean Acidification And Warming, Ben P. Harvey, Dylan Gwynn-Jones, Philippa J. Moore

Research outputs 2013

Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, …


Millennial Scale Impact On The Marine Biogeochemical Cycle Of Mercury From Early Mining On The Iberian Peninsula, Oscar Serrano Gras, A. Martinez-Cortizas, M. A. Mateo, H. Biester, R. Bindler Jan 2013

Millennial Scale Impact On The Marine Biogeochemical Cycle Of Mercury From Early Mining On The Iberian Peninsula, Oscar Serrano Gras, A. Martinez-Cortizas, M. A. Mateo, H. Biester, R. Bindler

Research outputs 2013

The high-resolution mercury record of a Posidonia oceanica mat in the northwest Mediterranean provides an unprecedented testimony of changes in environmental mercury (Hg) loading to the coastal marine environment over the past 4315 yr BP. The period reconstructed made it possible to establish tentative preanthropogenic background Hg levels for the area (6.8!1.5 ng g–1 in bulk sediments). A small, but significant, anthropogenic Hg increase was identifiable by ~2500 yr BP, in agreement with the beginning of intense mining in Spain. Changes in the record suggest four major periods of anthropogenic Hg pollution inputs to the Mediterranean: first, during the Roman …