Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

OS and Networks

PDF

Research Collection School Of Computing and Information Systems

Series

2024

Dynamic meta-path

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Dynamic Meta-Path Guided Temporal Heterogeneous Graph Neural Networks, Yugang Ji, Chuan Shi, Yuan Fang Jan 2024

Dynamic Meta-Path Guided Temporal Heterogeneous Graph Neural Networks, Yugang Ji, Chuan Shi, Yuan Fang

Research Collection School Of Computing and Information Systems

Graph Neural Networks (GNNs) have become the de facto standard for representation learning on topological graphs, which usually derive effective node representations via message passing from neighborhoods. Although GNNs have achieved great success, previous models are mostly confined to static and homogeneous graphs. However, there are multiple dynamic interactions between different-typed nodes in real-world scenarios like academic networks and e-commerce platforms, forming temporal heterogeneous graphs (THGs). Limited work has been done for representation learning on THGs and the challenges are in two aspects. First, there are abundant dynamic semantics between nodes while traditional techniques like meta-paths can only capture static …


Dynamic Meta-Path Guided Temporal Heterogeneous Graph Neural Networks, Yugang Ji, Chuan Shi, Yuan Fang Jan 2024

Dynamic Meta-Path Guided Temporal Heterogeneous Graph Neural Networks, Yugang Ji, Chuan Shi, Yuan Fang

Research Collection School Of Computing and Information Systems

Graph Neural Networks (GNNs) have become the de facto standard for representation learning on topological graphs, which usually derive effective node representations via message passing from neighborhoods. Although GNNs have achieved great success, previous models are mostly confined to static and homogeneous graphs. However, there are multiple dynamic interactions between different-typed nodes in real-world scenarios like academic networks and e-commerce platforms, forming temporal heterogeneous graphs (THGs). Limited work has been done for representation learning on THGs and the challenges are in two aspects. First, there are abundant dynamic semantics between nodes while traditional techniques like meta-paths can only capture static …