Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Scientific Computing

Missouri University of Science and Technology

Ions

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The First Potential Energy Surfaces For The C₆Hˉ-H₂ And C₆Hˉ-He Collisional Systems And Their Corresponding Inelastic Cross Sections, Kyle M. Walker, Fabien Dumouchel, François Lique, Richard Dawes Jul 2016

The First Potential Energy Surfaces For The C₆Hˉ-H₂ And C₆Hˉ-He Collisional Systems And Their Corresponding Inelastic Cross Sections, Kyle M. Walker, Fabien Dumouchel, François Lique, Richard Dawes

Chemistry Faculty Research & Creative Works

Molecular anions have recently been detected in the interstellar and circumstellar media. Accurate modeling of their abundance requires calculations of collisional data with the most abundant species that are usually He atoms and H2 molecules. In this paper, we focus on the collisional excitation of the first observed molecular anion, C6H-, by He and H2. Theoretical calculations of collisional cross sections rely generally on ab initio interaction potential energy surfaces (PESs). Hence, we present here the first PESs for the C6H--H2 and C6H--He van …


X-Ray Emission Produced In Charge-Exchange Collisions Between Highly Charged Ions And Argon: Role Of The Multiple Electron Capture, Sebastian Otranto, N. D. Cariatore, Ronald E. Olson Dec 2014

X-Ray Emission Produced In Charge-Exchange Collisions Between Highly Charged Ions And Argon: Role Of The Multiple Electron Capture, Sebastian Otranto, N. D. Cariatore, Ronald E. Olson

Physics Faculty Research & Creative Works

In this work we use the classical trajectory Monte Carlo method within an eight-electron scheme to theoretically study photonic spectra that follow charge-exchange processes between highly charged ions of charge states 10+, 17+, 18+, and 36+ with neutral argon. The energy range considered is 18 eV/amu to 4 keV/amu, covering typical electron beam ion traps and solar wind energies. The role played by multiple electron capture processes for the different collision systems under consideration is explicitly analyzed and its contribution separated as arising from radiative decay and autoionizing multiple capture. For the present collision systems we find that multiple electron …