Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Scientific Computing

PDF

Missouri University of Science and Technology

2015

Isotopes

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Kinetic Isotope Effect Of The ¹⁶O+³⁶O₂ And ¹⁸O+³²O₂ Isotope Exchange Reactions: Dominant Role Of Reactive Resonances Revealed By An Accurate Time-Dependent Quantum Wavepacket Study, Zhigang Sun, Dequan Yu, Wenbo Xie, Jiayi Hou, Richard Dawes, Hua Guo May 2015

Kinetic Isotope Effect Of The ¹⁶O+³⁶O₂ And ¹⁸O+³²O₂ Isotope Exchange Reactions: Dominant Role Of Reactive Resonances Revealed By An Accurate Time-Dependent Quantum Wavepacket Study, Zhigang Sun, Dequan Yu, Wenbo Xie, Jiayi Hou, Richard Dawes, Hua Guo

Chemistry Faculty Research & Creative Works

The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the 18O + 32O2 and 16O + 36O2 reactions obtained using the …


State-To-State Reaction Dynamics Of ¹⁸O+³²O₂ Studied By A Time-Dependent Quantum Wavepacket Method, Wenbo Xie, Lan Liu, Zhigang Sun, Hua Guo, Richard Dawes Feb 2015

State-To-State Reaction Dynamics Of ¹⁸O+³²O₂ Studied By A Time-Dependent Quantum Wavepacket Method, Wenbo Xie, Lan Liu, Zhigang Sun, Hua Guo, Richard Dawes

Chemistry Faculty Research & Creative Works

The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with 32O2 in the hypothetical j0 = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period …