Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Computation

Partial Differential Equations

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Diagonalization Of 1-D Schrodinger Operators With Piecewise Constant Potentials, Sarah Wright Dec 2020

Diagonalization Of 1-D Schrodinger Operators With Piecewise Constant Potentials, Sarah Wright

Master's Theses

In today's world our lives are very layered. My research is meant to adapt current inefficient numerical methods to more accurately model the complex situations we encounter. This project focuses on a specific equation that is used to model sound speed in the ocean. As depth increases, the sound speed changes. This means the variable related to the sound speed is not constant. We will modify this variable so that it is piecewise constant. The specific operator in this equation also makes current time-stepping methods not practical. The method used here will apply an eigenfunction expansion technique used in previous …


Enhancement Of Krylov Subspace Spectral Methods Through The Use Of The Residual, Haley Dozier May 2019

Enhancement Of Krylov Subspace Spectral Methods Through The Use Of The Residual, Haley Dozier

Dissertations

Depending on the type of equation, finding the solution of a time-dependent partial differential equation can be quite challenging. Although modern time-stepping methods for solving these equations have become more accurate for a small number of grid points, in a lot of cases the scalability of those methods leaves much to be desired. That is, unless the timestep is chosen to be sufficiently small, the computed solutions might exhibit unreasonable behavior with large input sizes. Therefore, to improve accuracy as the number of grid points increases, the time-steps must be chosen to be even smaller to reach a reasonable solution. …


Automatic Construction Of Scalable Time-Stepping Methods For Stiff Pdes, Vivian Ashley Montiforte May 2018

Automatic Construction Of Scalable Time-Stepping Methods For Stiff Pdes, Vivian Ashley Montiforte

Master's Theses

Krylov Subspace Spectral (KSS) Methods have been demonstrated to be highly scalable time-stepping methods for stiff nonlinear PDEs. However, ensuring this scalability requires analytic computation of frequency-dependent quadrature nodes from the coefficients of the spatial differential operator. This thesis describes how this process can be automated for various classes of differential operators to facilitate public-domain software implementation.


Numerical Methods For Non-Divergence Form Second Order Linear Elliptic Partial Differential Equations And Discontinuous Ritz Methods For Problems From The Calculus Of Variations, Stefan Raymond Schnake Aug 2017

Numerical Methods For Non-Divergence Form Second Order Linear Elliptic Partial Differential Equations And Discontinuous Ritz Methods For Problems From The Calculus Of Variations, Stefan Raymond Schnake

Doctoral Dissertations

This dissertation consists of three integral parts. Part one studies discontinuous Galerkin approximations of a class of non-divergence form second order linear elliptic PDEs whose coefficients are only continuous. An interior penalty discontinuous Galerkin (IP-DG) method is developed for this class of PDEs. A complete analysis of the proposed IP-DG method is carried out, which includes proving the stability and error estimate in a discrete W2;p-norm [W^2,p-norm]. Part one also studies the convergence of the vanishing moment method for this class of PDEs. The vanishing moment method refers to a PDE technique for approximating these PDEs by a …