Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Mathematical Modeling Of Mixtures And Numerical Solution With Applications To Polymer Physics, John Timothy Cummings Dec 2017

Mathematical Modeling Of Mixtures And Numerical Solution With Applications To Polymer Physics, John Timothy Cummings

Doctoral Dissertations

We consider in this dissertation the mathematical modeling and simulation of a general diffuse interface mixture model based on the principles of energy dissipation. The model developed allows for a thermodynamically consistent description of systems with an arbitrary number of different components, each of which having perhaps differing densities. We also provide a mathematical description of processes which may allow components to source or sink into other components in a mass conserving, energy dissipating way, with the motivation of applying this model to phase transformation. Also included in the modeling is a unique set of thermodynamically consistent boundary conditions which …


Efficient Methods For Multidimensional Global Polynomial Approximation With Applications To Random Pdes, Peter A. Jantsch Aug 2017

Efficient Methods For Multidimensional Global Polynomial Approximation With Applications To Random Pdes, Peter A. Jantsch

Doctoral Dissertations

In this work, we consider several ways to overcome the challenges associated with polynomial approximation and integration of smooth functions depending on a large number of inputs. We are motivated by the problem of forward uncertainty quantification (UQ), whereby inputs to mathematical models are considered as random variables. With limited resources, finding more efficient and accurate ways to approximate the multidimensional solution to the UQ problem is of crucial importance, due to the “curse of dimensionality” and the cost of solving the underlying deterministic problem.

The first way we overcome the complexity issue is by exploiting the structure of the …


Numerical Methods For Non-Divergence Form Second Order Linear Elliptic Partial Differential Equations And Discontinuous Ritz Methods For Problems From The Calculus Of Variations, Stefan Raymond Schnake Aug 2017

Numerical Methods For Non-Divergence Form Second Order Linear Elliptic Partial Differential Equations And Discontinuous Ritz Methods For Problems From The Calculus Of Variations, Stefan Raymond Schnake

Doctoral Dissertations

This dissertation consists of three integral parts. Part one studies discontinuous Galerkin approximations of a class of non-divergence form second order linear elliptic PDEs whose coefficients are only continuous. An interior penalty discontinuous Galerkin (IP-DG) method is developed for this class of PDEs. A complete analysis of the proposed IP-DG method is carried out, which includes proving the stability and error estimate in a discrete W2;p-norm [W^2,p-norm]. Part one also studies the convergence of the vanishing moment method for this class of PDEs. The vanishing moment method refers to a PDE technique for approximating these PDEs by a …


Information Metrics For Predictive Modeling And Machine Learning, Kostantinos Gourgoulias Jul 2017

Information Metrics For Predictive Modeling And Machine Learning, Kostantinos Gourgoulias

Doctoral Dissertations

The ever-increasing complexity of the models used in predictive modeling and data science and their use for prediction and inference has made the development of tools for uncertainty quantification and model selection especially important. In this work, we seek to understand the various trade-offs associated with the simulation of stochastic systems. Some trade-offs are computational, e.g., execution time of an algorithm versus accuracy of simulation. Others are analytical: whether or not we are able to find tractable substitutes for quantities of interest, e.g., distributions, ergodic averages, etc. The first two chapters of this thesis deal with the study of the …


Jet-Hadron Correlations Relative To The Event Plane Pb--Pb Collisions At The Lhc In Alice, Joel Anthony Mazer May 2017

Jet-Hadron Correlations Relative To The Event Plane Pb--Pb Collisions At The Lhc In Alice, Joel Anthony Mazer

Doctoral Dissertations

In relativistic heavy ion collisions at the Large Hadron Collider (LHC), a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced. Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. Within the framework of perturbative Quantum Chromodynamics (pQCD), jet production is well understood in pp collisions. We can use jets measured in pp interactions as a baseline reference for comparing to heavy ion collision systems to detect and study jet quenching. The jet quenching mechanism …


Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede May 2017

Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede

Doctoral Dissertations

Continuum models in computational material science require the choice of a surface energy function, based on properties of the material of interest. This work shows how to use atomistic bond-counting models and crystal geometry to inform this choice. We will examine some of the difficulties that arise in the comparison between these models due to differing types of truncation. New crystal geometry methods are required when considering materials with non-Bravais lattice structure, resulting in a multi-valued surface energy. These methods will then be presented in the context of the two-dimensional material graphene in a way that correctly predicts its equilibrium …