Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Physical Sciences and Mathematics

Genetic Algorithm Optimization Of Experiment Design For Targeted Uncertainty Reduction, Alexander Amedeo Depillis May 2024

Genetic Algorithm Optimization Of Experiment Design For Targeted Uncertainty Reduction, Alexander Amedeo Depillis

Masters Theses

Nuclear cross sections are a set of parameters that capture probability information about various nuclear reactions. Nuclear cross section data must be experimentally measured, and this results in simulations with nuclear data-induced uncertainties on simulation outputs. This nuclear data-induced uncertainty on most parameters of interest can be reduced by adjusting the nuclear data based on the results from an experiment. Integral nuclear experiments are experiments where the results are related to many different cross sections. Nuclear data may be adjusted to have less uncertainty by adjusting them to match the results obtained from integral experiments. Different integral experiments will adjust …


Multi-Objective Radiological Analysis In Real Environments, David Raji May 2024

Multi-Objective Radiological Analysis In Real Environments, David Raji

Doctoral Dissertations

Designing systems to solve problems arising in real-world radiological scenarios is a highly challenging task due to the contextual complexities that arise. Among these are emergency response, environmental exploration, and radiological threat detection. An approach to handling problems for these applications with explicitly multi-objective formulations is advanced. This is brought into focus with investigation of a number of case studies in both natural and urban environments. These include node placement in and path planning through radioactivity-contaminated areas, radiation detection sensor network measurement update sensitivity, control schemes for multi-robot radioactive exploration in unknown environments, and adversarial analysis for an urban nuclear …


Understanding The Impact Of Divertor And Main Chamber Ion Fluxes On Divertor Closure In The Diii-D Tokamak, Kirtan M. Davda May 2024

Understanding The Impact Of Divertor And Main Chamber Ion Fluxes On Divertor Closure In The Diii-D Tokamak, Kirtan M. Davda

Doctoral Dissertations

The diverted tokamak redirects extreme heat and particles to targets, a plasma-facing component designed for such loads. Here, the local fluxes produce strong particle recycling and sputtering. Recycled neutrals can “leak” into the region between the core and wall, the scrape-off-layer (SOL), impacting plasma performance. Increasing divertor closure can reduce leakage by containing neutrals within the divertor. However, there exists a need to quantify divertor baffle restrictions and understand closure directly from empirical data as opposed to indirectly through modeling.

Our study introduces the Geometric Restriction Parameter (GRP) based on simplifying neutral transport to ballistic pathways. Specifically, it considers the …


Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl May 2023

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl

Doctoral Dissertations

In the first part of this dissertation, we cover the development of a diamond semiconductor alpha-tagging sensor for associated particle imaging to solve challenges with currently employed scintillators. The alpha-tagging sensor is a double-sided strip detector made from polycrystalline CVD diamond. The performance goals of the alpha-tagging sensor are 700-picosecond timing resolution and 0.5 mm spatial resolution. A literature review summarizes the methodology, goals, and challenges in associated particle imaging. The history and current state of alpha-tagging sensors, followed by the properties of diamond semiconductors are discussed to close the literature review. The materials and methods used to calibrate the …


Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper May 2023

Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper

Doctoral Dissertations

Total absorption spectroscopy is a method of gamma-ray spectroscopy that has gained prominence in the past several decades, as nuclear data revisions are performed on older nuclear data, which is often incomplete. A strong understanding of underlying nuclear data, particularly fission and beta decay data, is essential for nuclear reactors and nuclear fuel decay heat. This PhD work involves the analysis of fission fragments 106Mo [Mo-106] and 106Tc [Tc-106]. These neutron rich isotopes contribute upwards of 6% of the cumulative fission yield of 241Pu [Pu-241] fission, and 4% of 239Pu [Pu-239] fission. Prior data for these two fission fragments only …


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht May 2022

Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht

Masters Theses

Beta decay and collinear laser spectroscopy are proven efficient tools to study nuclear structure far from stability. Two areas of significance are investigations into nuclear deformation and shape coexistence, as well as delayed neutron emissions used in nuclear energy applications. This contribution presents the ongoing development towards a novel beta-decay spectroscopy station for the VITO experiment at CERN’s radioactive ion beam facility ISOLDE. The setup will utilize both collinear laser spectroscopy and beta-decay spectroscopy to measure the energy and spin-parities of the ground and excited states of radioactive beams. Initial designs of the support structure, magnetic field, and detector array …


Meta-Heuristic Optimization Techniques For The Production Of Medical Isotopes Through Special Target Design, Cameron Ian Salyer May 2022

Meta-Heuristic Optimization Techniques For The Production Of Medical Isotopes Through Special Target Design, Cameron Ian Salyer

Masters Theses

Medical isotopes are used for a variety of different diagnostic and therapeutic purposes Ruth (2008). Due to recent newly discovered applications, their production has become rapidly more scarce than ever before Charlton (2019). Therefore, more efficient and less time consuming methods are of interest for not only the industry’s demand, but for the individuals who require radio-isotope procedures. Currently, the primary source of most medical isotopes used today are provided by reactor and cyclotron irradiation techniques, followed by supplemental radio-chemical separations Ruth (2008). Up until this point, target designs have been optimized by experience, back of the envelope calculations, and …


A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong May 2022

A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong

Doctoral Dissertations

This work presents the development of a high-rate 6Li-based pixelated neutron detector for neutron reflectometry instruments at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. The current detector technology falls short on the instrument requirements, particularly on the counting rate capability. This detector was designed specifically to overcome the limitation in counting rate by having a fully pixelated design from neutron conversion layer to photodetector and readout system. For the neutron converting layer, a 6Li-based neutron scintillator was used. Each scintillator element was coupled to a photodetector, in this case, a silicon photomultiplier (SiPM). The output of each SiPM …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah Dec 2021

Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah

Doctoral Dissertations

225Ac [Actinium-225] is a promising radionuclide for targeted alpha therapy of cancer. 229Pa can lead to the production of 229Th [Thorium-229] and 225Ac [Actinium-225]. Deuteron bombardment on natural thorium targets has been investigated to measure cross sections of protactinium isotopes. In this work, 229Pa [Protactinium-229] excitation function was measured via deuteron energies up to 50 MeV [Mega electron volt] of thin thorium foils. The irradiation took place at Lawrence Berkeley National Laboratory’s (LBNL) 88-Inch Cyclotron. The target processing and analysis were performed at Oak Ridge National Laboratory (ORNL). The target consisted of 4 thin foils …


Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer Aug 2021

Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer

Doctoral Dissertations

Radiation detectors are important for a variety of fields including medical imaging, oil drilling, and nuclear security. Within nuclear security, they can serve a multitude of purposes whether that be imaging, localization, isotopic identification, or even just activity measurement. Even without directly seeing a nuclear material it is often able to notice their existence without a detector. Scintillators make up an important part of these detectors due to their large intrinsic efficiency, low cost, large volume, and relatively low upkeep. Due to the importance of the large number of purposes these scintillators may be used for, it can often be …


Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini Aug 2021

Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini

Doctoral Dissertations

A collector probe in its simplest form is a rod inserted into a plasma so that impurities are deposited onto it. These probes are then removed and analyzed to determine the deposition profile both along the length of probe and across the width of it. This dissertation covers a series of collector probes experiments and accompanying interpretive modelling all with the main goal of providing evidence for long-hypothesized near scrape-off layer (SOL) accumulation of impurities that can lead to efficient core contamination. The structure of this dissertation is as follows. A brief outline of fusion energy and why we need …


Thorium Dioxide Extraction From Monazite Ore, Jason Pan, Niall Phelan Terry, Katherine Glass, Eli Jenkins, Connor High May 2021

Thorium Dioxide Extraction From Monazite Ore, Jason Pan, Niall Phelan Terry, Katherine Glass, Eli Jenkins, Connor High

Chancellor’s Honors Program Projects

No abstract provided.


Empirical Modeling Of Used Nuclear Fuel Radiation Emissions For Safeguards Purposes, Amanda M. Bachmann Aug 2020

Empirical Modeling Of Used Nuclear Fuel Radiation Emissions For Safeguards Purposes, Amanda M. Bachmann

Masters Theses

For nuclear nonproliferation safeguards, the ability to characterize used nuclear fuel (UNF) is a vital process. Fuel characterization allows for independent verification by inspectors of operator declarations of the special nuclear material flow and nuclear related activities within a facility, and an estimation of fissile material remaining in a fuel assembly. Current methods to verify this information rely heavily on non-destructive assay techniques, such as gamma spectroscopy and neutron detection measurements. While these measurements are effective tools for estimating a specific characteristic of the fuel, such as burnup or cooling time, they often require an accurate estimation of a select …


Thermodynamic Characterization And Isothermal Separability Of Heavy Fission Product Chelates For Post-Detonation Nuclear Forensic Analysis, Steven Adam Stratz May 2017

Thermodynamic Characterization And Isothermal Separability Of Heavy Fission Product Chelates For Post-Detonation Nuclear Forensic Analysis, Steven Adam Stratz

Doctoral Dissertations

Nuclear terrorism, one of the most critical threats to national security, exhibits complexities that do not exist with similar threats from sanctioned state actors. Responding to a domestic nuclear terrorism strike is difficult when the original source of the weapon may be unknown, given that terrorist organizations (at the time of writing) do not themselves have nuclear technology sufficient to design and build nuclear weapons. Consequently, the development of forensic techniques to help source and characterize nuclear weapons after detonation has recently become an area of interest. This relatively new field of science, known as post-detonation nuclear forensics, aims to …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


Development Of Nuclear Underground Engineered Test Surrogates For Technical Nuclear Forensics Exploitation, Robert Boone Gilbreath May 2017

Development Of Nuclear Underground Engineered Test Surrogates For Technical Nuclear Forensics Exploitation, Robert Boone Gilbreath

Masters Theses

A method for formulation and production of Nuclear UnderGround Engineered Test Surrogates (NUGETS) based on notional improvised nuclear device (IND) detonations in an underground environment analogous to the Nevada National Security Site (NNSS) is presented. Extensive statistical analyses of precursory geochemical and geophysical characteristics are combined with an augmented surrogate debris cooling technique and predictive IND contributions from the ORIGEN Fallout Analysis Tool. Precursory and resultant elemental compositions, cooling curve calculations, and visual comparison of NUGETS to genuine underground debris are reported. Application of NUGETS methodology to future studies in urban, underground post-detonation technical nuclear forensic (TNF) analysis is suggested.


Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini May 2017

Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini

Doctoral Dissertations

The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical efforts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization efficiency, often less than tenths of a percent; the majority of …


Beta-Delayed Neutron Data And Models For Scale, Kemper Dyar Talley Dec 2016

Beta-Delayed Neutron Data And Models For Scale, Kemper Dyar Talley

Doctoral Dissertations

Recent advancements in experimental and theoretical nuclear physics have yielded new data and models that more accurately describe the decay of fission products compared to historical data currently used for many applications. This work examines the effect of the adopting the Effective Density Model theory for beta-delayed neutron emission probability on calculations of delayed-neutron production and fission product nuclide concentrations after fission bursts as well as the total delayed neutron fraction in comparison with the Keepin 6-group model. We use ORIGEN within the SCALE code package for these calculations. We show quantitative changes to the isotopic concentrations for fallout nuclides …


Preliminary Investigation For The Development Of Surrogate Debris From Nuclear Detonations In Marine-Urban Environments, Adam G. Seybert Dec 2016

Preliminary Investigation For The Development Of Surrogate Debris From Nuclear Detonations In Marine-Urban Environments, Adam G. Seybert

Masters Theses

No nuclear weapon has ever been detonated in a United States city. However, this also means the nuclear forensic community has no actual debris from which to develop analytical methods for source attribution, making the development of surrogate nuclear debris a vital undertaking. Moreover, the development of marine-urban debris presents an unusual challenge because unlike soil and urban structures, which remain compositionally consistent, the elemental composition of harbor and port waters fluctuates considerably due to natural phenomenon and human activity. Additionally, marine vessel composition and cargo can vary dramatically. While early US nuclear tests were carried out in shallow-water coastal …


A Generalized Method For Fissile Material Characterization Using Short-Lived Fission Product Gamma Spectroscopy, Justin Richard Knowles Aug 2016

A Generalized Method For Fissile Material Characterization Using Short-Lived Fission Product Gamma Spectroscopy, Justin Richard Knowles

Doctoral Dissertations

Characterizing the fissile content of nuclear materials is of particular interest to the safeguards and nuclear forensics communities. Short-lived fission product gamma spectroscopy offers a significant reduction in analysis time and detection limits when compared to traditional non-destructive assay measurements. Through this work, a fully generalizable method that can be applied to variations in fissile compositions and neutron spectra was developed for the modeling and measurement of short-lived fission product gamma-rays. This method uses a 238-group neutron flux that was characterized for two pneumatic tube positions in the High Flux Isotope Reactor using flux monitor irradiations. This flux spectrum was …


Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin Aug 2016

Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin

Doctoral Dissertations

With more than 500 compositions, materials possessing the pyrochlore structure have a myriad of technological applications and physical phenomena. Three of the most noteworthy properties are the structure’s ability to resist amorphization making it a possible host matrix for spent nuclear fuel, its exotic magnetic properties arising from geometric frustration, and fast ionic conductivity for solid-oxide fuel cell applications. This work focuses on these three aspects of the pyrochlore’s many potential uses. Structural characterization revealed that pyrochlore-type oxides have a tendency to disorder from a high symmetry cubic structure to a lower symmetry orthorhombic arrangement in response to a variety …


Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold Aug 2016

Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold

Doctoral Dissertations

High energy proton spallation reactions on natural thorium metal targets have been utilized to produce multi mCi [milliCurie] quantities of Actinium-225. Theoretical cross sections for actinium and thorium isotopes as well as for a select number of the fission products produced in these reactions were generated by the Monte Carlo radiation transport code PHITS to simulate the experimental data obtained from sixteen irradiations of thorium metal targets with 25-210 µA [microampere] proton beams ranging in energies from 77 to 192 MeV. Irradiations were conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing …


Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts May 2016

Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts

Masters Theses

The disaster at the Fukushima Daiichi Nuclear Power Plant in March 2011 bought renewed focus to the issue of corrosion in nuclear fuel cladding applications. This thesis reports on the background behind these issues, the investigation strategy, and the analysis of experiments focused on mitigating oxidation of Zr-alloy fuel cladding. This thesis seeks to develop magnetron sputtered Ti-Al-C and Cr-Al-C coatings for Zr-alloy substrates and characterize the as-deposited and corroded samples.

Ti-Al-C and Cr-Al-C coatings were deposited onto ZIRLO, Si, and Al2O3 [Aluminum Oxide] substrates under various sputtering conditions. A combinatorial sputtering method was employed to refine …


Cd Transport In Eutectic Licl-Kcl And Contamination Of Zr Metal And Thermal Dehydration Of Bulk Licl-Kcl, Nicholas Azoy Earle May 2016

Cd Transport In Eutectic Licl-Kcl And Contamination Of Zr Metal And Thermal Dehydration Of Bulk Licl-Kcl, Nicholas Azoy Earle

Masters Theses

Researchers at Idaho National Labs have noted unexpectedly high Cd content in empty cladding hulls after processing in the Mark-IV ER. It has been theorized that Cd metal is transporting from the LCC pool through the eutectic LiCl-KCl salt bath to the anode baskets containing the empty hull where it is retained as a Zr-Cd intermetallic. This study sought to replicate the Cd contamination in a dry Ar glovebox using small-scale analogue of the Mark-IV ER salt-Cd metal system.

Anhydrous eutectic LiCl-KCl was an essential regent in this research and experiments were conducted to investigate the feasibility of dehydrating nominally …


Control System Requirements For A Nuclear Thermal Propulsion System, Adam Hasse, Michael Smith, Bradley Pershke, Andrew Adams, Stephen GilliAm May 2016

Control System Requirements For A Nuclear Thermal Propulsion System, Adam Hasse, Michael Smith, Bradley Pershke, Andrew Adams, Stephen GilliAm

Chancellor’s Honors Program Projects

No abstract provided.


Methodology For Generating Simplified Cross Section Data Sets For Neutron Transport Calculations, Thomas Jay Harrison Dec 2015

Methodology For Generating Simplified Cross Section Data Sets For Neutron Transport Calculations, Thomas Jay Harrison

Doctoral Dissertations

Neutron shielding problems involve radiation transport calculations over a wide range of energies. Fission neutrons have initial energy on the order of MeV, fusion neutrons have initial energy on the order of 10s of MeV, and space-origin neutrons have initial energy on the order of 100s of MeV or higher. Shielding calculations must track the neutrons from their initial energies until they are no longer of interest; for deep-penetration neutrons, this final energy can be on the order of eV before the neutron is no longer tracked. Thus, for deep-penetration space radiation shielding problems, the calculation may require tracking the …


Rapid Dissolution For Destructive Assay Of Nuclear Melt Glass, Jonathan Allen Gill Dec 2015

Rapid Dissolution For Destructive Assay Of Nuclear Melt Glass, Jonathan Allen Gill

Masters Theses

This study evaluates four methods for dissolving complex glassy debris resulting from nuclear detonations. The samples of interest simulate the glassy debris generated from a nuclear detonation’s fireball coming in contact with solid masses. Each method attempts to achieve dissolution through different approaches involving either acid digestion, alkaline digestion, or molten salt fusion. Two of the four methods were modified to retain all elements of the debris or surrogate debris. This retention is critical to the proportional relationships used in identifying fuel types and designs of nuclear weapons. Analysis is conducted with an inductively coupled time of flight mass spectrometer …


Synthesis And Thermodynamic Analysis Of Volatile Beta-Diketone Complexes Of Select Lanthanides Via Gas-Phase Separations, Daniel Hanson Dec 2014

Synthesis And Thermodynamic Analysis Of Volatile Beta-Diketone Complexes Of Select Lanthanides Via Gas-Phase Separations, Daniel Hanson

Doctoral Dissertations

Rapid separation techniques for fission and activation products have long been desired to supplant the slow solution-based methodologies currently used. In this work, rare earth elements were derivatized with β [beta]-diketones to synthesize rare earth complexes with high volatility suitable for gas-phase separations. Rare earth elements samarium and dysprosium were combined with hfac (1,1,1,5,5,5-hexafluoro-2,4-pentadione) and fod (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione) and analyzed using a gas-phase separation technique. Rare earth elements praseodymium and europium were combined with dpm (2,2,6,6-tetra-methyl-3,5-heptanedione) and similarly analyzed. Employing the data from the separations, the entropy (Δ [delta] S) and enthalpy (Δ [delta] H) of adsorption were evaluated mathematically based …