Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Natural Resources and Conservation

Series

2018

Imaging spectroscopy

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

The Spatial Sensitivity Of The Spectral Diversity–Biodiversity Relationship: An Experimental Test In A Prairie Grassland, Ran Wang, John A. Gamon, Jeannine Cavender-Bares, Philip A. Townsend, Arthur I. Zygielbaum Jan 2018

The Spatial Sensitivity Of The Spectral Diversity–Biodiversity Relationship: An Experimental Test In A Prairie Grassland, Ran Wang, John A. Gamon, Jeannine Cavender-Bares, Philip A. Townsend, Arthur I. Zygielbaum

School of Natural Resources: Faculty Publications

Remote sensing has been used to detect plant biodiversity in a range of ecosystems based on the varying spectral properties of different species or functional groups. However, the most appropriate spatial resolution necessary to detect diversity remains unclear. At coarse resolution, differences among spectral patterns may be too weak to detect. In contrast, at fine resolution, redundant information may be introduced. To explore the effect of spatial resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scaling exercise comparing synthetic pixels resampled from …


Imaging Spectroscopic Analysis Of Biochemical Traits For Shrub Species In Great Basin, Usa, Yi Qi, Susan L. Ustin, Nancy F. Glenn Jan 2018

Imaging Spectroscopic Analysis Of Biochemical Traits For Shrub Species In Great Basin, Usa, Yi Qi, Susan L. Ustin, Nancy F. Glenn

School of Natural Resources: Faculty Publications

The biochemical traits of plant canopies are important predictors of photosynthetic capacity and nutrient cycling. However, remote sensing of biochemical traits in shrub species in dryland ecosystems has been limited mainly due to the sparse vegetation cover, manifold shrub structures, and complex light interaction between the land surface and canopy. In order to examine the performance of airborne imaging spectroscopy for retrieving biochemical traits in shrub species, we collected Airborne Visible Infrared Imaging Spectrometer—Next Generation (AVIRIS-NG) images and surveyed four foliar biochemical traits (leaf mass per area, water content, nitrogen content and carbon) of sagebrush (Artemesia tridentata) and …


The Spatial Sensitivity Of The Spectral Diversity–Biodiversity Relationship: An Experimental Test In A Prairie Grassland, Ran Wang, John A. Gamon, Jeannine Cavender-Bares, Philip A. Townsend, Arthur I. Zygielbaum Jan 2018

The Spatial Sensitivity Of The Spectral Diversity–Biodiversity Relationship: An Experimental Test In A Prairie Grassland, Ran Wang, John A. Gamon, Jeannine Cavender-Bares, Philip A. Townsend, Arthur I. Zygielbaum

School of Natural Resources: Faculty Publications

Remote sensing has been used to detect plant biodiversity in a range of ecosystems based on the varying spectral properties of different species or functional groups. However, the most appropriate spatial resolution necessary to detect diversity remains unclear. At coarse resolution, differences among spectral patterns may be too weak to detect. In contrast, at fine resolution, redundant information may be introduced. To explore the effect of spatial resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scaling exercise comparing synthetic pixels resampled from …