Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Mutations Of Adjacent Amino Acid Pairs Are Not Always Independent, Jyotsna Ramanan, Peter Revesz Oct 2015

Mutations Of Adjacent Amino Acid Pairs Are Not Always Independent, Jyotsna Ramanan, Peter Revesz

CSE Conference and Workshop Papers

Evolutionary studies usually assume that the genetic mutations are independent of each other. This paper tests the independence hypothesis for genetic mutations with regard to protein coding regions. According to the new experimental results the independence assumption generally holds, but there are certain exceptions. In particular, the coding regions that represent two adjacent amino acids seem to change in ways that sometimes deviate significantly from the expected theoretical probability under the independence assumption.


Investigations Into The Molecular Mechanisms Of Bacterial Pathogen-Host Interactions: Construction Of A Dual Plasmid System For Incorporation Of Unnatural Amino Acids Into Pseudomonas Syringae Pv. Tomato Dc3000, Scotty D. Raber May 2015

Investigations Into The Molecular Mechanisms Of Bacterial Pathogen-Host Interactions: Construction Of A Dual Plasmid System For Incorporation Of Unnatural Amino Acids Into Pseudomonas Syringae Pv. Tomato Dc3000, Scotty D. Raber

Department of Chemistry: Dissertations, Theses, and Student Research

A dual plasmid system for the incorporation of unnatural amino acids into plant pathogen, Pseudomonas syringae pv. tomato DC3000, has been designed. This invention is expected to allow (a) mutations of proteins synthesized by the bacterium, P. syringae pv. tomato DC3000, that can capture molecular targets, especially for such modified proteins secreted by the phytopathogen into the host plant cells of A. thaliana and S. lycopersicum, (b) expression of biological probes in the bacterial species to monitor changes in redox, nutritional, and other small molecule states over pre-, post- and in situ disease stages, and (c) secretion of such …