Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

1,4-Dioxane Biodegradation In Propanotrophs: Molecular Foundations And Implications For Environmental Remediation, Li Fei Aug 2020

1,4-Dioxane Biodegradation In Propanotrophs: Molecular Foundations And Implications For Environmental Remediation, Li Fei

Dissertations

1,4-Dioxane (dioxane) has emerged with an escalating concern given its human carcinogenicity and widespread occurrence in groundwater. Bioremediation is promising as an effective and cost-efficient treatment alternative for in situ or ex situ cleanup of dioxane and co-existing pollutants in the field. Soluble di-iron monooxygenases (SDIMOs) are reputed for their essential roles in initiating the cleavage of dioxane and other pollutants. In this doctoral dissertation, molecular foundations for SDIMOs-mediated dioxane biodegradation are untangled to promote the development and implication of site-specific bioremediation and natural attenuation strategies. This dissertation focused on propanotrophic bacteria given their pivotal roles in dioxane metabolism and …


The Antimicrobial Activity And Cellular Targets Of Plant Derived Aldehydes And Degradable Pro-Antimicrobial Networks In Pseudomonas Aeruginosa, Yetunde Adewunmi Dec 2019

The Antimicrobial Activity And Cellular Targets Of Plant Derived Aldehydes And Degradable Pro-Antimicrobial Networks In Pseudomonas Aeruginosa, Yetunde Adewunmi

Dissertations

Essential oils (EOs) are plant-derived products that have been long exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to the broad-range antimicrobial activity, low toxicity to human commensal bacteria, and the capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, many aspects of their mode of action remain inconclusive. The overarching aim of this work was to address these gaps by studying molecular interactions between antimicrobial plant aldehydes and the opportunistic human pathogen Pseudomonas aeruginosa. We initiated …