Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Sustainable Bioproduction By Rhodopseudomonas Palustris Tie-1 Through Metabolic Engineering, Wei Bai Jan 2021

Sustainable Bioproduction By Rhodopseudomonas Palustris Tie-1 Through Metabolic Engineering, Wei Bai

McKelvey School of Engineering Theses & Dissertations

The heavy reliance of the petroleum industry for raw material and the rising atmospheric CO2 caused by this reliance have driven the research and development of sustainable alternatives. Microbial production of chemicals, such as fuel and plastic, has been viewed as a feasible method. The wide selection of substrates by microbes enables them to produce chemicals using naturally abundant material or industrial waste, such as CO2, making the production sustainable. Compared to the model organisms such as Escherichia coli, Saccharomyces cerevisiae, many non-model organisms have a broader selection for carbon, electron, and nitrogen sources, making them great candidates for sustainable …


Molecular Insights Into Microbial Adhesion, Roger Davies Klein May 2020

Molecular Insights Into Microbial Adhesion, Roger Davies Klein

Arts & Sciences Electronic Theses and Dissertations

Antibiotic-resistant bacterial infections are a serious and immediate threat to global public health. In the United States alone, over 2 million individuals develop antibiotic-resistant infections annually, resulting in 23,000 deaths and $20 billion in excess health care costs. Virulence factors that allow bacteria to invade and persist within the host are promising targets for novel antimicrobial agents that could be used to curb the spread of antibiotic resistance. Development of therapeutics that can selectively eliminate pathogenic bacteria while sparing the beneficial host microbiota requires a detailed molecular understanding of critical virulence factors that facilitate interactions between pathogens and their environments. …


Understanding The Physiology Of Extracellular Electron Uptake In Purple Nonsulfur Bacteria, Michael Singh Guzman Aug 2019

Understanding The Physiology Of Extracellular Electron Uptake In Purple Nonsulfur Bacteria, Michael Singh Guzman

Arts & Sciences Electronic Theses and Dissertations

Microbially catalyzed oxidation-reduction reactions drive nutrient cycling and energy flux on Earth. Photoautotrophs, which include the cyanobacteria (oxygenic) and purple and green sulfur bacteria (anoxygenic), transform light energy into chemical energy and are responsible for substantial global primary productivity. Anoxygenic phototrophs, in particular, play a crucial role in biogeochemical cycling in anoxic illuminated environments because of their ability to oxidize an array of inorganic compounds for CO2 fixation. Electron donors include molecular hydrogen, nitrite, and reduced sulfur compounds. Recent evidence has also suggested that solid-phase conductive substances (SPCSs), including rust (mixed-valent iron minerals) and their proxies (poised electrodes), can serve …