Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

The Factors Behind A Successful Implementation Of Electronic Health Records Systems, Anjee Gorkhali Oct 2012

The Factors Behind A Successful Implementation Of Electronic Health Records Systems, Anjee Gorkhali

Engineering Management & Systems Engineering Theses & Dissertations

This research explores the role that budget for Information System (IS) and technical expertise of healthcare service provider staff play on the successful leap from a partial to exhaustive implementation of Electronic Health Records (EHR) Systems. Technical expertise in Information Systems might not be easily measurable directly, but there are a number of indicators that could be used as a proxy, such as: Information System (IS) Department Budget, number of IS staff and the extent of technical trainings provided by the IS department to the clinical staff. This research study hypothesizes that quality technical trainings conducted by an IS department …


Identification Of Persistent Long Range Interactions In GA95 And GB95 Through Thermal Unfolding Simulations, Milen Redai Tesfamariam Jul 2012

Identification Of Persistent Long Range Interactions In GA95 And GB95 Through Thermal Unfolding Simulations, Milen Redai Tesfamariam

Chemistry & Biochemistry Theses & Dissertations

For over five decades, different experiments have been performed to research how proteins attain their native three dimensional structures. However, the folding problem continues to be a puzzle in modern science. The design of two proteins that have maximal sequence identity but different folds and functions is one method that is being used to study the relationship between protein structure and amino acid sequence. In particular, mutant proteins of Streptococcus protein G, GA and GB, have 95% sequence identity and a 3a helix fold and β4/a fold, respectively. Molecular dynamics simulations of GA95 …


Anthropogenic Climate Change And Allergic Diseases, James Blando, Leonard Bielory, Viann Nguyen, Rafael Diaz, Hueiwang Anna Jeng Mar 2012

Anthropogenic Climate Change And Allergic Diseases, James Blando, Leonard Bielory, Viann Nguyen, Rafael Diaz, Hueiwang Anna Jeng

Community & Environmental Health Faculty Publications

Climate change is expected to have an impact on various aspects of health, including mucosal areas involved in allergic inflammatory disorders that include asthma, allergic rhinitis, allergic conjunctivitis and anaphylaxis. The evidence that links climate change to the exacerbation and the development of allergic disease is increasing and appears to be linked to changes in pollen seasons (duration, onset and intensity) and changes in allergen content of plants and their pollen as it relates to increased sensitization, allergenicity and exacerbations of allergic airway disease. This has significant implications for air quality and for the global food supply.


An Epidemiological Model Of Rift Valley Fever With Spatial Dynamics, Tianchan Niu, Holly D. Gaff, Yiannis E. Papelis, David M. Hartley Jan 2012

An Epidemiological Model Of Rift Valley Fever With Spatial Dynamics, Tianchan Niu, Holly D. Gaff, Yiannis E. Papelis, David M. Hartley

Biological Sciences Faculty Publications

As a category A agent in the Center for Disease Control bioterrorism list, Rift Valley fever (RVF) is considered a major threat to the United States (USA). Should the pathogen be intentionally or unintentionally introduced to the continental USA, there is tremendous potential for economic damages due to loss of livestock, trade restrictions, and subsequent food supply chain disruptions. We have incorporated the effects of space into a mathematical model of RVF in order to study the dynamics of the pathogen spread as affected by the movement of humans, livestock, and mosquitoes. The model accounts for the horizontal transmission of …


Microfluidic Impedance Spectroscopy As A Tool For Quantitative Biology And Biotechnology, Ahmet C. Sabuncu, Jie Zhuang, Juergen F. Kolb, Ali Beskok Jan 2012

Microfluidic Impedance Spectroscopy As A Tool For Quantitative Biology And Biotechnology, Ahmet C. Sabuncu, Jie Zhuang, Juergen F. Kolb, Ali Beskok

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to …


Procedural Wound Geometry And Blood Flow Generation For Medical Training Simulators, Rifat Aras, Yuzhong Shen, Jiang Li, David R. Holmes Iii (Ed.), Kenneth H. Wong (Ed.) Jan 2012

Procedural Wound Geometry And Blood Flow Generation For Medical Training Simulators, Rifat Aras, Yuzhong Shen, Jiang Li, David R. Holmes Iii (Ed.), Kenneth H. Wong (Ed.)

Electrical & Computer Engineering Faculty Publications

Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the …


Cyanobacteria Dominance In The Oligohaline Waters Of Back Bay, Virginia, Harold G. Marshall Jan 2012

Cyanobacteria Dominance In The Oligohaline Waters Of Back Bay, Virginia, Harold G. Marshall

Biological Sciences Faculty Publications

Back Bay and its flora have historically been influenced by the interaction of freshwater flow in combination with frequent intrusion of saline water into its basin. These events have resulted in a dynamic environmental setting influencing the abundance and composition of its phytoplankton community. Dominating these oligohaline waters is a diverse representation and high abundance of freshwater filamentous and colonial cyanobacteria. These include the nonheterocystous Planktolyngbya contorta, Planktolyngbya limnetica, and Pseudanabaena limnetica, taxa implicated as bloom producers in Bay waters with N:P molar ratios ranging from 23:1 to 74:1.


In Vivo Quantitative Study Of Sized-Dependent Transport And Toxicity Of Single Silver Nanoparticles Using Zebrafish Embryos, Kerry J. Lee, Lauren M. Browning, Prakash D. Nallathamby, Tanvi Desai, Pavan K. Cherukui, Xiao-Hong Nancy Xu Jan 2012

In Vivo Quantitative Study Of Sized-Dependent Transport And Toxicity Of Single Silver Nanoparticles Using Zebrafish Embryos, Kerry J. Lee, Lauren M. Browning, Prakash D. Nallathamby, Tanvi Desai, Pavan K. Cherukui, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Nanomaterials possess distinctive physicochemical properties (e.g., small sizes and high surface area-to-volume ratios) and promise a wide variety of applications, ranging from the design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advances in nanotechnology. In this study, we have synthesized and characterized purified and stable (nonaggregation) silver nanoparticles (Ag NPs, 41.6 ± 9.1 nm in average diameter) and utilized early developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe the diffusion and toxicity of Ag NPs. We found that single …