Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

PDF

University of Texas Rio Grande Valley

Machine learning

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Explainable Machine Learning Reveals The Relationship Between Hearing Thresholds And Speech-In-Noise Recognition In Listeners With Normal Audiograms, Jithin Raj Balan, Hansapani Rodrigo, Udit Saxena, Srikanta K. Mishra Oct 2023

Explainable Machine Learning Reveals The Relationship Between Hearing Thresholds And Speech-In-Noise Recognition In Listeners With Normal Audiograms, Jithin Raj Balan, Hansapani Rodrigo, Udit Saxena, Srikanta K. Mishra

School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Some individuals complain of listening-in-noise difficulty despite having a normal audiogram. In this study, machine learning is applied to examine the extent to which hearing thresholds can predict speech-in-noise recognition among normal-hearing individuals. The specific goals were to (1) compare the performance of one standard (GAM, generalized additive model) and four machine learning models (ANN, artificial neural network; DNN, deep neural network; RF, random forest; XGBoost; eXtreme gradient boosting), and (2) examine the relative contribution of individual audiometric frequencies and demographic variables in predicting speech-in-noise recognition. Archival data included thresholds (0.25–16 kHz) and speech recognition thresholds (SRTs) from listeners with …


Predicting The Outcomes Of Internet-Based Cognitive Behavioral Therapy For Tinnitus: Applications Of Artificial Neural Network And Support Vector Machine, Hansapani Rodrigo, Eldré W. Beukes, Gerhard Andersson, Vinaya Manchaiah Dec 2022

Predicting The Outcomes Of Internet-Based Cognitive Behavioral Therapy For Tinnitus: Applications Of Artificial Neural Network And Support Vector Machine, Hansapani Rodrigo, Eldré W. Beukes, Gerhard Andersson, Vinaya Manchaiah

School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Purpose:

Internet-based cognitive behavioral therapy (ICBT) has been found to be effective for tinnitus management, although there is limited understanding about who will benefit the most from ICBT. Traditional statistical models have largely failed to identify the nonlinear associations and hence find strong predictors of success with ICBT. This study aimed at examining the use of an artificial neural network (ANN) and support vector machine (SVM) to identify variables associated with treatment success in ICBT for tinnitus.

Method:

The study involved a secondary analysis of data from 228 individuals who had completed ICBT in previous intervention studies. A 13-point reduction …


Factors Influencing Intent To Take A Covid-19 Test In The United States, Sheila Rutto Dec 2021

Factors Influencing Intent To Take A Covid-19 Test In The United States, Sheila Rutto

Theses and Dissertations

In 2020, COVID-19 became the first pandemic in the world’s history that brought the entire world to an abrupt and unexpected halt. Since the first reported case of the disease to date, the novel coronavirus has been able to wreak havoc in literary every corner of the globe and left an ever-growing number of unprecedented fatalities. The normal way of life has been disrupted, and the level of uncertainty about the end of this pandemic continues to manifest to many. Due to the urgency to bring this pandemic under control, medical officers have been able to recommend actions that people …


Exploratory Data Mining Techniques (Decision Tree Models) For Examining The Impact Of Internet-Based Cognitive Behavioral Therapy For Tinnitus: Machine Learning Approach, Hansapani Rodrigo, Eldré W. Beukes, Gerhard Andersson, Vinaya Manchaiah Nov 2021

Exploratory Data Mining Techniques (Decision Tree Models) For Examining The Impact Of Internet-Based Cognitive Behavioral Therapy For Tinnitus: Machine Learning Approach, Hansapani Rodrigo, Eldré W. Beukes, Gerhard Andersson, Vinaya Manchaiah

School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Background: There is huge variability in the way that individuals with tinnitus respond to interventions. These experiential variations, together with a range of associated etiologies, contribute to tinnitus being a highly heterogeneous condition. Despite this heterogeneity, a “one size fits all” approach is taken when making management recommendations. Although there are various management approaches, not all are equally effective. Psychological approaches such as cognitive behavioral therapy have the most evidence base. Managing tinnitus is challenging due to the significant variations in tinnitus experiences and treatment successes. Tailored interventions based on individual tinnitus profiles may improve outcomes. Predictive models of treatment …