Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Polynomial Factoring Algorithms And Their Computational Complexity, Nicholas Cavanna May 2014

Polynomial Factoring Algorithms And Their Computational Complexity, Nicholas Cavanna

Honors Scholar Theses

Finite fields, and the polynomial rings over them, have many neat algebraic properties and identities that are very convenient to work with. In this paper we will start by exploring said properties with the goal in mind of being able to use said properties to efficiently irreducibly factorize polynomials over these fields, an important action in the fields of discrete mathematics and computer science. Necessarily, we must also introduce the concept of an algorithm’s speed as well as particularly speeds of basic modular and integral arithmetic opera- tions. Outlining these concepts will have laid the groundwork for us to introduce …


An Analysis Of The Practical Dpg Method, Jay Gopalakrishnan, Weifeng Qiu Apr 2014

An Analysis Of The Practical Dpg Method, Jay Gopalakrishnan, Weifeng Qiu

Mathematics and Statistics Faculty Publications and Presentations

We give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) method, accounting for all the approximations made in its practical implementation. Specifically, we consider the DPG method that uses a trial space consisting of polynomials of degree p on each mesh element. Earlier works showed that there is a "trial-to-test" operator T, which when applied to the trial space, defines a test space that guarantees stability. In DPG formulations, this operator T is local: it can be applied element-by-element. However, an infinite dimensional problem on each mesh element needed to be solved to apply T. In practical computations, …


Conditional Tests On Basins Of Attraction With Finite Fields, Ian H. Dinwoodie Mar 2014

Conditional Tests On Basins Of Attraction With Finite Fields, Ian H. Dinwoodie

Mathematics and Statistics Faculty Publications and Presentations

An iterative method is given for computing the polynomials that vanish on the basin of attraction of a steady state in discrete polynomial dynamics with finite field coefficients. The algorithm is applied to dynamics of a T cell survival network where it is used to compare transition maps conditional on a basin of attraction.