Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

Journal

Georgia Southern University

Trees

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Counting Power Domination Sets In Complete M-Ary Trees, Hays Whitlatch, Katharine Shultis, Olivia Ramirez, Michele Ortiz, Sviatlana Kniahnitskaya Jan 2023

Counting Power Domination Sets In Complete M-Ary Trees, Hays Whitlatch, Katharine Shultis, Olivia Ramirez, Michele Ortiz, Sviatlana Kniahnitskaya

Theory and Applications of Graphs

Motivated by the question of computing the probability of successful power domination by placing k monitors uniformly at random, in this paper we give a recursive formula to count the number of power domination sets of size k in a labeled complete m-ary tree. As a corollary we show that the desired probability can be computed in exponential with linear exponent time.


Harmonious Labelings Via Cosets And Subcosets, Jared L. Painter, Holleigh C. Landers, Walker M. Mattox Jul 2022

Harmonious Labelings Via Cosets And Subcosets, Jared L. Painter, Holleigh C. Landers, Walker M. Mattox

Theory and Applications of Graphs

In [Abueida, A. and Roblee, K., More harmonious labelings of families of disjoint unions of an odd cycle and certain trees, J. Combin. Math. Combin. Comput., 115 (2020), 61-68] it is shown that the disjoint union of an odd cycle and certain paths is harmonious, and that certain starlike trees are harmonious using properties of cosets for a particular subgroup of the integers modulo m, where m is the number of edges of the graph. We expand upon these results by first exploring the numerical properties when adding values from cosets and subcosets in the integers modulo m. …


Path-Tables Of Trees: A Survey And Some New Results, Kevin Asciak Jan 2015

Path-Tables Of Trees: A Survey And Some New Results, Kevin Asciak

Theory and Applications of Graphs

The (vertex) path-table of a tree Τ contains quantitative information about the paths in Τ. The entry (i,j) of this table gives the number of paths of length j passing through vertex vi. The path-table is a slight variation of the notion of path layer matrix. In this survey we review some work done on the vertex path-table of a tree and also introduce the edge path-table. We show that in general, any type of path-table of a tree Τ does not determine Τ uniquely. We shall show that in trees, the number of paths passing through …