Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

Mathematics and Statistics Faculty Publications and Presentations

Algorithms

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

The Log-Exponential Smoothing Technique And Nesterov’S Accelerated Gradient Method For Generalized Sylvester Problems, N. T. An, Daniel J. Giles, Nguyen Mau Nam, R. Blake Rector Feb 2016

The Log-Exponential Smoothing Technique And Nesterov’S Accelerated Gradient Method For Generalized Sylvester Problems, N. T. An, Daniel J. Giles, Nguyen Mau Nam, R. Blake Rector

Mathematics and Statistics Faculty Publications and Presentations

The Sylvester or smallest enclosing circle problem involves finding the smallest circle enclosing a finite number of points in the plane. We consider generalized versions of the Sylvester problem in which the points are replaced by sets. Based on the log-exponential smoothing technique and Nesterov’s accelerated gradient method, we present an effective numerical algorithm for solving these problems.


Minimizing Differences Of Convex Functions With Applications To Facility Location And Clustering, Mau Nam Nguyen, R. Blake Rector, Daniel J. Giles Feb 2016

Minimizing Differences Of Convex Functions With Applications To Facility Location And Clustering, Mau Nam Nguyen, R. Blake Rector, Daniel J. Giles

Mathematics and Statistics Faculty Publications and Presentations

In this paper we develop algorithms to solve generalized Fermat-Torricelli problems with both positive and negative weights and multifacility location problems involving distances generated by Minkowski gauges. We also introduce a new model of clustering based on squared distances to convex sets. Using the Nesterov smoothing technique and an algorithm for minimizing differences of convex functions called the DCA introduced by Tao and An, we develop effective algorithms for solving these problems. We demonstrate the algorithms with a variety of numerical examples.


Nonsmooth Algorithms And Nesterov's Smoothing Technique For Generalized Fermat-Torricelli Problems, Nguyen Mau Nam, Nguyen Thai An, R. Blake Rector, Jie Sun Oct 2014

Nonsmooth Algorithms And Nesterov's Smoothing Technique For Generalized Fermat-Torricelli Problems, Nguyen Mau Nam, Nguyen Thai An, R. Blake Rector, Jie Sun

Mathematics and Statistics Faculty Publications and Presentations

We present algorithms for solving a number of new models of facility location which generalize the classical Fermat--Torricelli problem. Our first approach involves using Nesterov's smoothing technique and the minimization majorization principle to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the nondifferentiability of the cost functions. Convergence results of the algorithms are proved and numerical tests are presented to show the effectiveness of the proposed algorithms.


Convergence Analysis Of A Multigrid Algorithm For The Acoustic Single Layer Equation, Simon Gemmrich, Jay Gopalakrishnan, Nilima Nigam Feb 2012

Convergence Analysis Of A Multigrid Algorithm For The Acoustic Single Layer Equation, Simon Gemmrich, Jay Gopalakrishnan, Nilima Nigam

Mathematics and Statistics Faculty Publications and Presentations

We present and analyze a multigrid algorithm for the acoustic single layer equation in two dimensions. The boundary element formulation of the equation is based on piecewise constant test functions and we make use of a weak inner product in the multigrid scheme as proposed in Bramble et al. (1994) . A full error analysis of the algorithm is presented. We also conduct a numerical study of the effect of the weak inner product on the oscillatory behavior of the eigenfunctions for the Laplace single layer operator.


Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh Jan 2011

Commuting Smoothed Projectors In Weighted Norms With An Application To Axisymmetric Maxwell Equations, Jay Gopalakrishnan, Minah Oh

Mathematics and Statistics Faculty Publications and Presentations

We construct finite element projectors that can be applied to functions with low regularity. These projectors are continuous in a weighted norm arising naturally when modeling devices with axial symmetry. They have important commuting diagram properties needed for finite element analysis. As an application, we use the projectors to prove quasioptimal convergence for the edge finite element approximation of the axisymmetric time-harmonic Maxwell equations on nonsmooth domains. Supplementary numerical investigations on convergence deterioration at high wavenumbers and near Maxwell eigenvalues and are also reported.


The Convergence Of V-Cycle Multigrid Algorithms For Axisymmetric Laplace And Maxwell Equations, Jay Gopalakrishnan, Joseph E. Pasciak Jan 2006

The Convergence Of V-Cycle Multigrid Algorithms For Axisymmetric Laplace And Maxwell Equations, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

We investigate some simple finite element discretizations for the axisymmetric Laplace equation and the azimuthal component of the axisymmetric Maxwell equations as well as multigrid algorithms for these discretizations. Our analysis is targeted at simple model problems and our main result is that the standard V-cycle with point smoothing converges at a rate independent of the number of unknowns. This is contrary to suggestions in the existing literature that line relaxations and semicoarsening are needed in multigrid algorithms to overcome difficulties caused by the singularities in the axisymmetric Maxwell problems. Our multigrid analysis proceeds by applying the well known regularity …


Analysis Of A Multigrid Algorithm For Time Harmonic Maxwell Equations, Jay Gopalakrishnan, Joseph E. Pasciak, Leszek Demkowicz Jan 2004

Analysis Of A Multigrid Algorithm For Time Harmonic Maxwell Equations, Jay Gopalakrishnan, Joseph E. Pasciak, Leszek Demkowicz

Mathematics and Statistics Faculty Publications and Presentations

This paper considers a multigrid algorithm suitable for efficient solution of indefinite linear systems arising from finite element discretization of time harmonic Maxwell equations. In particular, a "backslash" multigrid cycle is proven to converge at rates independent of refinement level if certain indefinite block smoothers are used. The method of analysis involves comparing the multigrid error reduction operator with that of a related positive definite multigrid operator. This idea has previously been used in multigrid analysis of indefinite second order elliptic problems. However, the Maxwell application involves a nonelliptic indefinite operator. With the help of a few new estimates, the …


Multigrid For The Mortar Finite Element Method, Jay Gopalakrishnan, Joseph E. Pasciak Jan 2000

Multigrid For The Mortar Finite Element Method, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

A multigrid technique for uniformly preconditioning linear systems arising from a mortar finite element discretization of second order elliptic boundary value problems is described and analyzed. These problems are posed on domains partitioned into subdomains, each of which is independently triangulated in a multilevel fashion. The multilevel mortar finite element spaces based on such triangulations (which need not align across subdomain interfaces) are in general not nested. Suitable grid transfer operators and smoothers are developed which lead to a variable Vcycle preconditioner resulting in a uniformly preconditioned algebraic system. Computational results illustrating the theory are also presented.