Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Inexact Fixed-Point Proximity Algorithms For Nonsmooth Convex Optimization, Jin Ren Aug 2022

Inexact Fixed-Point Proximity Algorithms For Nonsmooth Convex Optimization, Jin Ren

Mathematics & Statistics Theses & Dissertations

The aim of this dissertation is to develop efficient inexact fixed-point proximity algorithms with convergence guaranteed for nonsmooth convex optimization problems encountered in data science. Nonsmooth convex optimization is one of the core methodologies in data science to acquire knowledge from real-world data and has wide applications in various fields, including signal/image processing, machine learning and distributed computing. In particular, in the context of image reconstruction, compressed sensing and sparse machine learning, either the objective functions or the constraints of the modeling optimization problems are nondifferentiable. Hence, traditional methods such as the gradient descent method and the Newton method are …


Chen-Fliess Series For Linear Distributed Systems, Natalie T. Pham May 2022

Chen-Fliess Series For Linear Distributed Systems, Natalie T. Pham

Electrical & Computer Engineering Theses & Dissertations

Distributed systems like fluid flow and heat transfer are modeled by partial differential equations (PDEs). In control theory, distributed systems are generally reformulated in terms of a linear state space realization, where the state space is an infinite dimensional Banach space or Hilbert space. In the finite dimension case, the input-output map can always be written in terms of a Chen-Fliess functional series, that is, a weighted sum of iterated integrals of the components of the input function. The Chen-Fliess functional series has been used to describe interconnected nonlinear systems, to solve system inversion and tracking problems, and to design …


Machine Learning Classification Of Digitally Modulated Signals, James A. Latshaw May 2022

Machine Learning Classification Of Digitally Modulated Signals, James A. Latshaw

Electrical & Computer Engineering Theses & Dissertations

Automatic classification of digitally modulated signals is a challenging problem that has traditionally been approached using signal processing tools such as log-likelihood algorithms for signal classification or cyclostationary signal analysis. These approaches are computationally intensive and cumbersome in general, and in recent years alternative approaches that use machine learning have been presented in the literature for automatic classification of digitally modulated signals. This thesis studies deep learning approaches for classifying digitally modulated signals that use deep artificial neural networks in conjunction with the canonical representation of digitally modulated signals in terms of in-phase and quadrature components. Specifically, capsule networks are …