Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

PDF

2006

Heights

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Quadratic Forms And Height Functions, Lenny Fukshansky Jun 2006

Quadratic Forms And Height Functions, Lenny Fukshansky

CMC Faculty Publications and Research

The effective study of quadratic forms originated with a paper of Cassels in 1955, in which he proved that if an integral quadratic form is isotropic, then it has non-trivial zeros of bounded height. Here height stands for a certain measure of arithmetic complexity, which we will make precise. This theorem has since been generalized and extended in a number of different ways. We will discuss some of such generalizations for quadratic spaces over a fixed number field as well as over the field of algebraic numbers. Specifically, let K be either a number field or its algebraic closure, and …


Siegel’S Lemma With Additional Conditions, Lenny Fukshansky Jan 2006

Siegel’S Lemma With Additional Conditions, Lenny Fukshansky

CMC Faculty Publications and Research

Let K be a number field, and let W be a subspace of K-N, N >= 1. Let V-1,..., V-M be subspaces of KN of dimension less than dimension of W. We prove the existence of a point of small height in W\boolean OR(M)(i=1) V-i, providing an explicit upper bound on the height of such a point in terms of heights of W and V-1,..., V-M. Our main tool is a counting estimate we prove for the number of points of a subspace of K-N inside of an adelic cube. As corollaries to our main result we derive an explicit …


Integral Points Of Small Height Outside Of A Hypersurface, Lenny Fukshansky Jan 2006

Integral Points Of Small Height Outside Of A Hypersurface, Lenny Fukshansky

CMC Faculty Publications and Research

Let F be a non-zero polynomial with integer coefficients in N variables of degree M. We prove the existence of an integral point of small height at which F does not vanish. Our basic bound depends on N and M only. We separately investigate the case when F is decomposable into a product of linear forms, and provide a more sophisticated bound. We also relate this problem to a certain extension of Siegel’s Lemma as well as to Faltings’ version of it. Finally we exhibit an application of our results to a discrete version of the Tarski plank problem.