Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Improving The Accuracy For The Long-Term Hydrologic Impact Assessment (L-Thia) Model, Anqi Zhang, Lawrence Theller, Bernard A. Engel Aug 2017

Improving The Accuracy For The Long-Term Hydrologic Impact Assessment (L-Thia) Model, Anqi Zhang, Lawrence Theller, Bernard A. Engel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Urbanization increases runoff by changing land use types from less impervious to impervious covers. Improving the accuracy of a runoff assessment model, the Long-Term Hydrologic Impact Assessment (L-THIA) Model, can help us to better evaluate the potential uses of Low Impact Development (LID) practices aimed at reducing runoff, as well as to identify appropriate runoff and water quality mitigation methods. Several versions of the model have been built over time, and inconsistencies have been introduced between the models. To improve the accuracy and consistency of the model, the equations and parameters (primarily curve numbers in the case of this model) …


Predicting Locations Of Pollution Sources Using Convolutional Neural Networks, Yiheng Chi, Nickolas D. Winovich, Guang Lin Aug 2017

Predicting Locations Of Pollution Sources Using Convolutional Neural Networks, Yiheng Chi, Nickolas D. Winovich, Guang Lin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Pollution is a severe problem today, and the main challenge in water and air pollution controls and eliminations is detecting and locating pollution sources. This research project aims to predict the locations of pollution sources given diffusion information of pollution in the form of array or image data. These predictions are done using machine learning. The relations between time, location, and pollution concentration are first formulated as pollution diffusion equations, which are partial differential equations (PDEs), and then deep convolutional neural networks are built and trained to solve these PDEs. The convolutional neural networks consist of convolutional layers, reLU layers …