Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein Aug 2015

Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Plasma facing components (PFCs) in fusion devices must be able to withstand high temperatures and erosion due to incident energetic ion radiations. Tungsten has become the material of choice for PFCs due to its high strength, thermal conductivity, and low erosion rate. However, its surface deteriorates significantly under helium ion irradiation in fusion-like conditions and forms nanoscopic fiber-like structures, or fuzz. Fuzz is brittle in nature and has relatively lower thermal conductivity than that of the bulk material. Small amounts of fuzz may lead to excessive contamination of the plasma, preventing the fusion reaction from taking place. Despite recent efforts, …


Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay Aug 2015

Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than half of the annual energy consumption in the United States is lost as waste heat. Polymer-based thermoelectric devices have the potential to utilize this waste heat both sustainably and cost-effectively. Although conjugated polymers currently dominate research in organic thermoelectrics, the potential of using polymers with radical pendant groups have yet to be realized. These polymers have been found to be as conductive as pristine (i.e., not doped) poly(3-hexylthiophene) (P3HT), a commonly-used charge-transporting conjugated polymer. This could yield promising avenues for thermoelectric material design as radical polymers are more synthetically tunable and are hypothesized to have a high Seebeck …