Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng Dec 2018

Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng

Dissertations

The fabrication of flexible nickel-zinc batteries using a facile mixing of electroactive components for electrode preparation is presented. Polytetrafluoroethylene (PTFE) is found to be an effective binder by reducing concentration polarization, providing chemical/physical stability and enhancing flexibility. The zinc electrode containing PTFE maintains its original porous morphology even after hundreds of cycles while polymers such as PEO show morphology change. Each component, as well as the assembled flexible cells show desired flexibility and stability even under bending conditions.

The fabrication of flexible nickel-iron batteries using printable composite electrodes embedded with multiwalled carbon nanotubes (CNT) is also presented. All the metal …


Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo Dec 2018

Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo

Electronic Thesis and Dissertation Repository

The current Canadian used nuclear fuel container (UFC) design uses a pressure‑grade carbon steel (CS) vessel with its outer surface coated with a thin layer of copper. One concern regarding the structural integrity of the UFC design is the potential internal corrosion of the CS vessel. Moisture trapped inside a UFC could condense within the gap between the hemispherical head and the cylindrical body of the vessel. The internal UFC environment will be exposed to a continuous flux of ionizing radiation arising from the decay of radionuclides trapped in the used UO2 fuel matrix.

This thesis research project investigates …


Recent Progress In Organic Redox Flow Batteries, Li-Xing Xia, Hao Liu, Lin Liu, Zhan-Ao Tan Oct 2018

Recent Progress In Organic Redox Flow Batteries, Li-Xing Xia, Hao Liu, Lin Liu, Zhan-Ao Tan

Journal of Electrochemistry

Redox flow batteries (RFBs) are promising candidate for balancing instability of grids caused by integration of intermittent renewable energies such as solar energy and wind energy. Along with wide deployments in solar energy and wind energy due to abundance and declining installation cost, it can be predicted that RFBs will enter a period of rapid development. Basically,RFBs are electrochemical energy storage devices that decouple energy and power of the system by storing liquid electrolyte in tanks outside battery system itself. Such a unique framework makes RFBs flexible and fulfills the various demands of grids. During battery operation, redox-active species are …


Superhydrophobic Surface On Aluminum Alloy By Hydrothermal Method And Its Electrochemical Performance, Xiao-Hang Chen, Mo-Jing Chen, Yu-Lin Min, Qun-Jie Xu Feb 2018

Superhydrophobic Surface On Aluminum Alloy By Hydrothermal Method And Its Electrochemical Performance, Xiao-Hang Chen, Mo-Jing Chen, Yu-Lin Min, Qun-Jie Xu

Journal of Electrochemistry

Superhydrophobic film formed on a metal surface is an effective way for corrosion protection. In this paper, the superhydrophobic film was prepared on the surfaces of aluminum alloy by hydrothermally treating with a solution containing CeCl3·7H2O and CO(NH2)2 , and a self-assemble process. The electrochemical measurements and surface morphology results confirmed that the best superhydrophobicity and electrochemical performance could be achieved with the contact angle of 155.5o after six hours of hydrothermal reaction. Furthermore, the inhibition efficiency of 99.6% was obtained in 3.5 wt% NaCl aqueous solution, indicating the excellent corrosion resistance …