Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins Dec 2023

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins

Doctoral Dissertations

This dissertation focuses on understanding and addressing the fundamental physicochemical phenomena that lead to weak interfaces and structural warpage in material extrusion 3D printing. Polymeric feedstocks used for this manufacturing technique were manipulated through the incorporation of additives that alter the dynamics of the matrix during and after printing. In Chapter II, adhesion between layers of structures printed from PEEK was strengthened through a combination of low-molecular weight additive incorporation and post-printing thermal annealing. Chapter III reports a method for decreasing the irreversible thermal strain of structures printed from poly(lactic acid) by introducing nanographene and photoinitiator additives into the feedstock …


Polymer-Based Nanotherapeutics To Combat Difficult-To-Treat Bacterial Infections, Jessa Marie V. Makabenta Nov 2023

Polymer-Based Nanotherapeutics To Combat Difficult-To-Treat Bacterial Infections, Jessa Marie V. Makabenta

Doctoral Dissertations

The continuous emergence and spread of antibiotic-resistant bacteria are a global health emergency, debilitating the capability to prevent and cure various infectious diseases that were once treatable. Antibiotic therapy is further rendered ineffective due to biofilm formation and the ability of bacteria to thrive and colonize inside mammalian cells. Given the diminishing efficacy of available antibiotics combined with the scarcity of new therapeutics entering the antibiotic pipeline, innovative treatment strategies are urgently in demand. Nanomaterial-based strategies offer ‘outside of the box’ approach for the treatment of antibiotic-resistant bacterial infections. Nanomaterials feature tunable physicochemical properties that can be carefully modified to …


Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Applying Density Functional Theory Simulations To Study The Charge Balancing And Structure Directing Roles Of Fluoride In Zeolite Synthesis, Tongkun Wang Nov 2023

Applying Density Functional Theory Simulations To Study The Charge Balancing And Structure Directing Roles Of Fluoride In Zeolite Synthesis, Tongkun Wang

Doctoral Dissertations

Zeolites represent a major cornerstone of today’s energy industry as the most-used petrochemical catalyst by weight in the world. Constituted by tetrahedra of T-atoms including Si, Al, Ge and Ti, zeolites form a huge family of nano-porous crystalline materials which also provide reliable candidates for novel, energy related applications such as efficient separations, hydrogen-purifying/storing and conversions from biomass to biofuel. However, the formation mechanism of zeolite is still not clear, as synthesis processes are complicated by requirements including structure directing agents (SDAs), hydroxide or fluoride medium, and experimental conditions like temperature. Attempts for designing new zeolite structures still fall in …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg May 2023

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan May 2023

Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan

Doctoral Dissertations

Conjugated scaffolds with high electronic conductivity, high surface area, etc. are promising materials for diverse technological applications, especially in the electrochemical field. However, the current synthesis methods are still limited to the traditional solution-based method or the ionothermal method, which always require an inert atmosphere shield, large amounts of organic solvents, noble catalysts, long reaction time up to days, and high temperatures, etc. Therefore, there is a common goal of developing conjugated scaffolds through facile, green, straightforward pathways. Mechanochemistry, which is an efficient, sustainable, solvent-free methodology, could provide a unique reaction environment to synthesize this kind of functionalized materials, resulting …


Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson May 2023

Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson

Doctoral Dissertations

Polynorbornenes are ideal materials for systematic structure-property investigations designed to correlate gas-transport properties to polymer structure. The modular nature of norbornene-derived systems provides a facile route towards the synthesis of diverse polymeric materials, whose structure may be systematically altered through targeted design of monomers, alterations in polymerization mechanism, or some combination of these two strategies. Though many valuable correlations between gas-permeability and polynorbornene structure have been summarized in prior literature, many of these efforts have focused on homopolymer materials with structural changes imposed — almost exclusively — through modifications in substituent chemistry, or through targeted modulation of molar ratios in …


The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman May 2023

The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman

Doctoral Dissertations

Integral membrane proteins are prolific targets for the design, development, and delivery of pharmaceuticals. In fact, over 60% of all currently available drugs target these proteins to accomplish their therapeutic effect. However, integral membrane proteins remain the least characterized class of all proteins, accounting for only ~2% of all solved protein structures. One of the primary reasons for this low number of solved protein structures is that many membrane proteins lose their native conformation when extracted using conventional methods (e.g. detergents), convoluting accurate structure determination. In contrast, amphiphilic styrene-maleic acid copolymers (SMAs) were recently discovered to readily isolate membrane proteins …


Scanning Probe And Spectroscopic Investigations Of Polarization-Driven Electronic Interactions At The Inorganic/Organic Interface Of 2d Materials, Nicholas Hight-Huf Apr 2023

Scanning Probe And Spectroscopic Investigations Of Polarization-Driven Electronic Interactions At The Inorganic/Organic Interface Of 2d Materials, Nicholas Hight-Huf

Doctoral Dissertations

My thesis focuses on understanding the changes in electronic properties of two-dimensional materials produced by surface interactions not limited to charge exchange. Recent work from our group demonstrated that both small molecules and polymers can function as effective charge dopants for monolayered 2D materials such as MoS2 and graphene, changing the Fermi energy by either donating or accepting electron density to/from the 2D material. Additionally, the underlying support material was found to play a significant role, where higher dielectric constant supports result in larger magnitude of Fermi energy shift of the 2D material because less of the dopant interaction …