Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry

Chemistry Faculty Publications

Porous silicon

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of Mechanochemical Modification Of Porous Silicon With Arginine, Jacklyn A. Dipietro, Kurt W. Kolasinski Mar 2022

Characterization Of Mechanochemical Modification Of Porous Silicon With Arginine, Jacklyn A. Dipietro, Kurt W. Kolasinski

Chemistry Faculty Publications

Mechanochemistry initiated the reaction of hydrogen-terminated porous silicon (H/por-Si) powder with arginine. Samples were analyzed using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. Arginine, which was physisorbed onto the surface of por-Si, blue-shifted the peak PL intensity from similar to 630 nm for the H/por-Si to similar to 565 nm for arginine-coated por-Si. Grinding for 4 h reduced >80% of the initially 2-45 mu m particles to <500 nm, but was observed to quench the PL. With appropriate rinsing and centrifugation, particles in the 100 nm range were isolated. Rinsing ground powder with water was required to remove the unreacted arginine. Without rinsing, excess arginine induced the aggregation of passivated particles. However, water reacted with the freshly ground por-Si powder producing H-2. A zeta potential of +42 mV was measured for arginine-terminated por-Si particles dispersed in deionized water. This positive value was consistent with termination such that NH2 groups extended away from the surface. Furthermore, this result was confirmed by FTIR spectra, which suggested that arginine was bound to silicon through the formation of a covalent Si-O bond.


Metal-Assisted Catalytic Etching (Mace) For Nanofabrication Of Semiconductor Powders, Kurt W. Kolasinski Jul 2021

Metal-Assisted Catalytic Etching (Mace) For Nanofabrication Of Semiconductor Powders, Kurt W. Kolasinski

Chemistry Faculty Publications

Electroless etching of semiconductors has been elevated to an advanced micromachining process by the addition of a structured metal catalyst. Patterning of the catalyst by lithographic techniques facilitated the patterning of crystalline and polycrystalline wafer substrates. Galvanic deposition of metals on semiconductors has a natural tendency to produce nanoparticles rather than flat uniform films. This characteristic makes possible the etching of wafers and particles with arbitrary shape and size. While it has been widely recognized that spontaneous deposition of metal nanoparticles can be used in connection with etching to porosify wafers, it is also possible to produced nanostructured powders. Metal-assisted …


Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity In Si Powders, Konstantin Tamarov, Riku Kiviluoto, Josph D. Swanson, Bret A. Unger, Alexis T. Ernst, Mark Aindow, Joakim Riikonen, Vesa-Pekka Lehto, Kurt W. Kolasinski Oct 2020

Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity In Si Powders, Konstantin Tamarov, Riku Kiviluoto, Josph D. Swanson, Bret A. Unger, Alexis T. Ernst, Mark Aindow, Joakim Riikonen, Vesa-Pekka Lehto, Kurt W. Kolasinski

Chemistry Faculty Publications

The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE. With mechanistic insight derived from extensive experimentation, it is demonstrated that (1) the method allows the use of not only Ag, Pd, Pt, and Au as metal catalysts but also Cu and (2) judicious combinations of process parameters such …


Response Of Photoluminescence Of H-Terminated And Hydrosilylated Porous Si Powders To Rinsing And Temperature, Kurt W. Kolasinski, Joseph D. Swanson, Benjamin Roe, Teresa Lee Aug 2020

Response Of Photoluminescence Of H-Terminated And Hydrosilylated Porous Si Powders To Rinsing And Temperature, Kurt W. Kolasinski, Joseph D. Swanson, Benjamin Roe, Teresa Lee

Chemistry Faculty Publications

The photoluminescence (PL) response of porous Si has potential applications in a number of sensor and bioimaging techniques. However, many questions still remain regarding how to stabilize and enhance the PL signal, as well as how PL responds to environmental factors. Regenerative electroless etching (ReEtching) was used to produce photoluminescent porous Si directly from Si powder. As etched, the material was H-terminated. The intensity and peak wavelength were greatly aected by the rinsing protocol employed. The highest intensity and bluest PL were obtained when dilute HCl(aq) rinsing was followed by pentane wetting and vacuum oven drying. Roughly half of the …


Crystallographically Determined Etching And Its Relevance To The Metal-Assisted Catalytic Etching (Mace) Of Silicon Powders, Kurt W. Kolasinski, Bret A. Unger, Alexis T. Ernst, Mark Aindow Jan 2019

Crystallographically Determined Etching And Its Relevance To The Metal-Assisted Catalytic Etching (Mace) Of Silicon Powders, Kurt W. Kolasinski, Bret A. Unger, Alexis T. Ernst, Mark Aindow

Chemistry Faculty Publications

Metal-assisted catalytic etching (MACE) using Ag nanoparticles as catalysts and H2O2 as oxidant has been performed on single-crystal Si wafers, single-crystal electronics grade Si powders, and polycrystalline metallurgical grade Si powders. The temperature dependence of the etch kinetics has been measured over the range 5–37◦C. Etching is found to proceed preferentially in a h001i direction with an activation energy of ∼0.4 eV on substrates with (001), (110), and (111) orientations. A quantitative model to explain the preference for etching in the h001i direction is developed and found to be consistent with the measured activation energies. Etching of metallurgical grade powders …


Electron Transfer During Metal-Assisted And Stain Etching Of Silicon, Kurt W. Kolasinski Oct 2015

Electron Transfer During Metal-Assisted And Stain Etching Of Silicon, Kurt W. Kolasinski

Chemistry Faculty Publications

The etching of silicon in fluoride solutions is limited by the kinetics of charge transfer not thermodynamics. This characteristic is what gives fluoride etching its great versatility in making different types of nanostructures as the result of self-limiting chemistry. This review approaches the kinetics of electron transfer from silicon and metal coated silicon to a solution phase species from a fundamental point of view in order to establish a better understanding of the mechanisms of nanostructure formation during metal assisted and stain etching of silicon. Band bending calculations demonstrate that diffusion of holes away from low work function metals such …


The Mechanism Of Galvanic/Metal-Assisted Etching Of Silicon, Kurt W. Kolasinski Jan 2014

The Mechanism Of Galvanic/Metal-Assisted Etching Of Silicon, Kurt W. Kolasinski

Chemistry Faculty Publications

No abstract provided.