Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Fabrication Of Gold Nanoraspberry Arrays By Soft Lithography, Christy Yu-Qing Xie Aug 2022

Fabrication Of Gold Nanoraspberry Arrays By Soft Lithography, Christy Yu-Qing Xie

Undergraduate Student Research Internships Conference

Nanostructures and nanoparticles have garnered increasing interest over the past decade due to their unique properties and applications. These properties include localized surface plasmon resonance (LSPR) and allow for surface modification. We can tune these properties depending on the nanoparticle’s size, shape, and geometry.

This work aims to fabricate plasmonic platforms through patterning gold nanoparticles (raspberries) by microcontact printing, a simple and cost-effective soft lithography technique. This is done through large-scale patterning using polydimethylsiloxane (PDMS) stamps to pattern an adhesion template and spatially guide the adsorption of gold nanoparticles (AuNPs).


Optimization Of The Synthesis Parameters Of Sapo-34, Adam Honchar Aug 2022

Optimization Of The Synthesis Parameters Of Sapo-34, Adam Honchar

Undergraduate Student Research Internships Conference

A microporous material known as SAPO-34 is a very efficient catalyst in methanol-to-olefins reactions. My project aimed to optimize synthesis parameters of SAPO-34 to reduce crystallization time in order to study the formation mechanism using In-situ NMR spectroscopy. Understanding the crystallization mechanism would allow us to make it more efficient and tailor-made to fit for other applications.


Contact Angle & Electrochemical Measurements Of Metallic Atmospheric Corrosion On Copper And Carbon Steel, Jacob J.M. Bunting, Jiju M. Joseph, Heng-Yong Nie, Samantha M. Gateman Aug 2022

Contact Angle & Electrochemical Measurements Of Metallic Atmospheric Corrosion On Copper And Carbon Steel, Jacob J.M. Bunting, Jiju M. Joseph, Heng-Yong Nie, Samantha M. Gateman

Undergraduate Student Research Internships Conference

Understanding atmospheric corrosion has been incredibly challenging due to the complex interplay between surface microstructures, environmental variables, and electrochemical processes. The methodology presented is being developed to apply to atmospheric corrosion models of metals and other advanced materials by observing the change in contact angle in situ as a function of corrosion parameters. Performed contact angle measurements on two industrially relevant metals (copper and carbon steel) over a 1 min to 30-day time span to track the change in wettability due to the formation of an air-formed oxide layer (aged) as a function of surface roughness.


Structural Tuning Of Two-Dimensional Perovskites At High Pressure, Lauren A. Diloreto Aug 2021

Structural Tuning Of Two-Dimensional Perovskites At High Pressure, Lauren A. Diloreto

Undergraduate Student Research Internships Conference

Two-Dimensional Perovskites are semiconductors and are of interest to researchers as the class of materials show great promise for innovating improvements to solar cells. The purpose of this experiment is to determine if a metastable change will occur in the materials: DPDAPbI4 and CMA2PbI4 upon compression to approximately 9 GPa. The experiment was conducted using diamond anvil cells (DAC) to apply static pressure to the materials. The pressure of the sample was then measured using ruby fluorescence. Then, FTIR or Raman spectroscopy acquisitions were obtained at various pressures. Subsequently, the data suggests that a metastable change did not occur. Additionally, …


Photoswitchable Self-Complementary Hydrogen Bond Arrays, Suendues Noori, James A. Wisner Jun 2019

Photoswitchable Self-Complementary Hydrogen Bond Arrays, Suendues Noori, James A. Wisner

Western Research Forum

Background: Photochromism is the reversible transformation of a chemical material to another form by the absorption of electromagnetic radiation (light), where the two metastable forms have distinct absorption spectra and other properties. Photochromism in materials allows for the switching of their function solely based on irradiation with light. Polymers are used frequently as the building blocks for materials as they are versatile, multifunctional, can carry charge and be processed by solution-based deposition methods. Supramolecular polymers share the same definition as polymers with the exception that they are held together by reversible and directional non-covalent interactions such as hydrogen bonds. Synthesizing …