Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry

University of Kentucky

Theses and Dissertations--Chemistry

Ion diffusion

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Synthesis And In Situ Characterization Of Intercalated Transition Metal Oxide Nanomaterials Investigated For Novel Cathode Applications, Ahamed Ullah Jan 2022

Synthesis And In Situ Characterization Of Intercalated Transition Metal Oxide Nanomaterials Investigated For Novel Cathode Applications, Ahamed Ullah

Theses and Dissertations--Chemistry

To develop an effective battery cathode material that can be useful for future batteries, the thermal stability and ion diffusion dynamics need to be well understood. In situ transmission electron microscopy (TEM) is a popular and proven technique to study the evolution of local structures during the dynamic processes in the cathode materials. This dissertation will demonstrate the application of high-resolution imaging and in situ heating and biasing in the TEM to study the structure and composition, morphology change, and ion diffusion in the cathode materials.

The three chapters in this dissertation will be focused on the two cathode materials: …


Interfaces In Lead-Free Tin Perovskite Photovoltaics: An Investigation Of Energetics, Ion Mobility, Surface Modification, And Performance, Alex Boehm Jan 2020

Interfaces In Lead-Free Tin Perovskite Photovoltaics: An Investigation Of Energetics, Ion Mobility, Surface Modification, And Performance, Alex Boehm

Theses and Dissertations--Chemistry

Halide perovskites have generated tremendous interest as low-cost semiconductors for optoelectronics, such as photovoltaics, lasers, and light emitting diodes due to their extraordinary optical and transport properties. Perovskite photovoltaics in particular have demonstrated a meteoric rise in power conversion efficiencies and drawn considerable interest as a next-generation solar energy technology. The rapid development has centered around lead-based derivatives, and concerns regarding the toxicity of lead has sparked interest in low toxicity and more environmentally friendly perovskite derivatives. In this regime tin (Sn) is regarded as a prominent alternative owing to the ideal bandgap and reduced toxicity exhibited by Sn-halide perovskites. …