Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry

Chapman University

2013

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Poly (N-Isopropylacrylamide) Microgel-Based Etalons And Etalon Arrays For Determining The Molecular Weight Of Polymers In Solution, Molla R. Islam, Michael J. Serpe Nov 2013

Poly (N-Isopropylacrylamide) Microgel-Based Etalons And Etalon Arrays For Determining The Molecular Weight Of Polymers In Solution, Molla R. Islam, Michael J. Serpe

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Positively and/or negatively charged poly (N-isopropylacrylamide)-based microgels were deposited on a single substrate and isolated regions of Au overlayers were deposited on top of the microgels. Each spatially isolated Au overlayer region had a different thickness to make an etalon array.We found that areas with a thin Au overlayer (5 nm) responded to a range of polymer molecular weights (MW), while areas with a thick overlayer (35 nm) can only respond to low molecular weight polyelectrolytes. By comparing the optical responses of the device’s individual array elements, a good approximation of the polyelectrolyteMWin solution can be made.


Label-Free Detection Of Low Protein Concentration In Solution Using A Novel Colorimetric Assay, Molla R. Islam, Michael J. Serpe May 2013

Label-Free Detection Of Low Protein Concentration In Solution Using A Novel Colorimetric Assay, Molla R. Islam, Michael J. Serpe

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Dual pH and temperature sensitive microgel-based etalons were fabricated by sandwiching a “monolithic” microgel layer between two semitransparent, Au layers. The devices exhibit visual color and multipeak reflectance spectra, both of which primarily depend on the distance between the Au surfaces mediated by the microgel diameter. We found that a polycationic polyelectrolyte can penetrate through the Au overlayer to interact with negatively charged microgel confined between Au overlayers. In this submission we report that biotinylated polycationic polymer can penetrate through the Au overlayer of a poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalon and cause the microgel layer to collapse. The collapse …