Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Photo-Isomerizable Complementary Hydrogen Bond Arrays, Jeffrey S. Pleizier Dec 2018

Photo-Isomerizable Complementary Hydrogen Bond Arrays, Jeffrey S. Pleizier

Electronic Thesis and Dissertation Repository

The use of light as an external stimulus provides a non-invasive technique to induce large changes in physical and chemical properties of a substrate. The incorporation of a photochromic subunit into supramolecular polymeric systems therefore adds a potential "smart" quality for polymer manipulation. The azo moiety (-N=N-) is one of the most popular photochromic units as the trans to cis isomerization results in a large degree of spatial rearrangement. This present thesis exploits the azo group by its incorporation into complementary hydrogen bonded complexes. Hydrogen bonding acceptor groups attached to the periphery of the central azo photoswitch provided strong complexation …


Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo Dec 2018

Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo

Electronic Thesis and Dissertation Repository

The current Canadian used nuclear fuel container (UFC) design uses a pressure‑grade carbon steel (CS) vessel with its outer surface coated with a thin layer of copper. One concern regarding the structural integrity of the UFC design is the potential internal corrosion of the CS vessel. Moisture trapped inside a UFC could condense within the gap between the hemispherical head and the cylindrical body of the vessel. The internal UFC environment will be exposed to a continuous flux of ionizing radiation arising from the decay of radionuclides trapped in the used UO2 fuel matrix.

This thesis research project investigates …


Pressure Tuning Of Energy Storage Materials Probed By In-Situ Vibrational Spectroscopy And Synchrotron Radiation, Pan Wang Oct 2018

Pressure Tuning Of Energy Storage Materials Probed By In-Situ Vibrational Spectroscopy And Synchrotron Radiation, Pan Wang

Electronic Thesis and Dissertation Repository

Clean and renewable energy has drawn much attention recently due to the increasing demand for more energy and environmental issues. New materials have been developed and the improved performance of such materials have been achieved in the past decades. It has been proved that application of external high pressure can significantly tune the structure of materials. Consequently, the properties of the materials could also be modified. Therefore, in this thesis, we focused on the high-pressure studies of two classes of energy storage materials, hydrogen storage materials and solar cell materials. Ammonia borane (AB) has been extensively investigated as an excellent …


Synthesis And Characterization Of Alkynyl-Substituted Boron Formazanate Dyes, Alex Van Belois Sep 2018

Synthesis And Characterization Of Alkynyl-Substituted Boron Formazanate Dyes, Alex Van Belois

Electronic Thesis and Dissertation Repository

This thesis outlines the synthesis and characterization of the first alkynyl-substituted boron formazanate complexes and explores the electronic and structural changes that occur in these systems as a result of chemical modification at the boron centre. An alkynyl-substituted complex appended with a redox-active handle is also described, and the chemical reduction and oxidation of this system is explored. Finally, a model reaction is examined as a proof of concept toward the post-synthetic modification of these boron formazanate systems through copper(I)-assisted alkyne-azide cycloaddition chemistry. Exploiting chemistry at the boron centre opens up new possibilities toward incorporating function onto the boron formazanate …


Effects Of High Pressure On Photochemical Reactivity Of Organic Molecular Materials Probed By Vibrational Spectroscopy, Jiwen Guan Jul 2018

Effects Of High Pressure On Photochemical Reactivity Of Organic Molecular Materials Probed By Vibrational Spectroscopy, Jiwen Guan

Electronic Thesis and Dissertation Repository

Chemical transformations of molecular materials induced by high pressure and light radiation exhibit novel and intriguing aspects that have attracted much attention in recent years. Particularly, under the two stimuli, entire transformations of molecular species can be realized in condensed phases without employing additional chemical constraints, e.g., the need of solvents, catalysts or radical initiators. This new synthetic approach in chemistry therefore satisfies increasing need for production methods with reduced environmental impacts. Motivated by these promises, my Ph. D thesis focuses on this state-of-the-art branch of high-pressure photochemistry. Specifically, high pressure is employed to create the necessary reaction conditions to …


Computational And Spectroscopic Studies In The Design Of Tetrapyrrole Dyes For Dye-Sensitized Solar Cells, Angel (Qi Wen) Zhang Jul 2018

Computational And Spectroscopic Studies In The Design Of Tetrapyrrole Dyes For Dye-Sensitized Solar Cells, Angel (Qi Wen) Zhang

Electronic Thesis and Dissertation Repository

Cyclic tetrapyrroles, like porphyrins, phthalocyanines, and chlorins, are of great interest for dye-sensitized solar cell (DSSC) applications due to their highly versatile structure, tunable π based spectroscopic and electrochemical properties, and excellent stabilities. As well, they have a structural analogy with chlorophyll, a natural photosensitizer. Chlorophylls exhibit a red and intense lowest energy absorption band that is one of the ideal properties of a dye for application in DSSCs. However, because chlorophylls are unstable, it is necessary to design similar but more stable tetrapyrroles with these ideal properties. The relationship between chlorophyll’s geometric structure and spectral properties were first explored …


The Incorporation Of Phosphorus Into Block Copolymers And Their Self-Assembly, Benjamin F. Hisey Jun 2018

The Incorporation Of Phosphorus Into Block Copolymers And Their Self-Assembly, Benjamin F. Hisey

Electronic Thesis and Dissertation Repository

The content of this thesis focuses on the incorporation of phosphorus into amphiphilic block copolymers (BCPs) for the realization of novel properties in the solution phase self-assembled materials derived from the BCPs. The incorporation was achieved through either attaching phosphorus to the terminus of already existing BCPs or the synthesis of novel BCPs from prepared or commercially available phosphorus containing monomers. The phosphorus containing polymers exhibited properties dependent on the existence of the phosphorus species in the BCPs. The first example of this is the modification of poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) copolymers by the attachment of tetraalkyl …


Glycopolymer Functionalization Of Polymersomes, Josh Jadischke May 2018

Glycopolymer Functionalization Of Polymersomes, Josh Jadischke

Electronic Thesis and Dissertation Repository

Carbohydrates are important to cellular communication, recognition, and pathogenesis, making them a useful synthetic target for application in therapeutics and diagnosis. Synthetic carbohydrate presenting scaffolds can replicate or interrupt the binding interactions that occur in nature. Due to the weak nature of the monosaccharide-protein bond, most carbohydrate presenting scaffolds display saccharides in a multivalent manner to improve binding. Recently there has been an effort to combine carbohydrate containing scaffolds with polymersomes (vesicles composed of polymers), due to the structural resemblance of polymersome membranes to biological membranes. This thesis describes the progress towards functionalizing polymersomes with linear glycopolymers as a potential …


Multiresonant Anisotropic Nanostructures For Plasmon-Mediated Spectroscopies, Gregory Q. Wallace Mar 2018

Multiresonant Anisotropic Nanostructures For Plasmon-Mediated Spectroscopies, Gregory Q. Wallace

Electronic Thesis and Dissertation Repository

To detect and analyze molecular species of interest, analytical sciences and technologies exploit the variation in the chemical properties associated with the analytes. Techniques involving vibrational spectroscopy rely on the unique response observed when a molecule interacts with light. Although these methods can provide the specificity needed for detection, they are traditionally hindered by the need for large quantities of material, and long acquisition times. To minimize these issues, advancements in plasmon-enhanced techniques, such as surface-enhanced Raman spectroscopy (SERS) and surface-enhanced infrared absorption (SEIRA) are being made. Such techniques make use of the strong interaction between an optical field and …