Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry

PDF

Missouri University of Science and Technology

Series

Oxygen evolution reaction

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Tailored (La0.2pr0.2nd0.2tb0.2dy0.2)2ce2o7 As A Highly Active And Stable Nanocatalyst For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Palani Raja Jothi, Bo Jiang, Manashi Nath, Katharine Page Jan 2024

Tailored (La0.2pr0.2nd0.2tb0.2dy0.2)2ce2o7 As A Highly Active And Stable Nanocatalyst For The Oxygen Evolution Reaction, Sreya Paladugu, Ibrahim Munkaila Abdullahi, Palani Raja Jothi, Bo Jiang, Manashi Nath, Katharine Page

Chemistry Faculty Research & Creative Works

Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self-assembly (EISA) can be used to synthesize highly porous and high surface area cerate-based fluorite nano catalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nano catalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is …


Molecular Cluster Complex Of High-Valence Chromium Selenide Carbonyl As Effective Electrocatalyst For Water Oxidation, Ibrahim Munkaila Abdullahi, Manashi Nath Apr 2023

Molecular Cluster Complex Of High-Valence Chromium Selenide Carbonyl As Effective Electrocatalyst For Water Oxidation, Ibrahim Munkaila Abdullahi, Manashi Nath

Chemistry Faculty Research & Creative Works

Developing Simple, Affordable, and Environmentally Friendly Water Oxidation Electrocatalysts with High Intrinsic Activity and Low overpotential Continues to Be an Area of Intense Research. in This Article, a Trichromium Diselenide Carbonyl Cluster Complex (Et4N)2[Se2Cr3(CO)10], with a Unique Bonding Structure Comprising Bridging Se Groups, Has Been Identified as a Promising Electrocatalyst for Oxygen Evolution Reaction (OER). This Carbonyl Cluster Exhibits a Promising overpotential of 310 MV and a Low Tafel Slope of 82.0 MV Dec−1 at 10 MAcm−2, with Superior Durability in an Alkaline Medium, for a Prolonged …


Nanostructured Ternary Nickel-Based Mixed Anionic (Telluro)-Selenide As A Superior Catalyst For Oxygen Evolution Reaction, Ibrahim Munkaila Abdullahi, Siby Thomas, Alessio Gagliardi, Mohsen Asle Zaeem, Manashi Nath Jan 2023

Nanostructured Ternary Nickel-Based Mixed Anionic (Telluro)-Selenide As A Superior Catalyst For Oxygen Evolution Reaction, Ibrahim Munkaila Abdullahi, Siby Thomas, Alessio Gagliardi, Mohsen Asle Zaeem, Manashi Nath

Chemistry Faculty Research & Creative Works

Developing Protocols for Designing High-Efficiency, Durable, Cost-Effective Electrocatalysts for Oxygen Evolution Reaction (OER) Necessitates Deeper Understanding of Structure–property Correlation as a Function of Composition. Herein, It Has Been Demonstrated that Incorporating Tellurium into Binary Nickel Chalcogenide (NiSe) and Creating a Mixed Anionic Phase Perturbs its Electronic Structure and Significantly Enhances the OER Activity. a Series of Nanostructured Nickel Chalcogenides Comprising a Layer-By-Layer Morphology Along with Mixed Anionic Ternary Phase Are Grown in Situ on Nickel Foam with Varying Morphological Textures using Simple Hydrothermal Synthesis Route. Comprehensive X-Ray Diffraction, X-Ray Photoelectron Spectroscopy, and in Situ Raman Spectroscopy Analysis Confirms the Formation …