Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Marine Biology

PDF

OES Faculty Publications

Climate change

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Potential Interactions Between Diatoms And Bacteria Are Shaped By Trace Element Gradients In The Southern Ocean, Alexa R. Sterling, Laura Z. Holland, Randelle M. Bundy, Shannon M. Burns, Kristen N. Buck, P. Dreux Chappell, Bethany D. Jenkins Jan 2023

Potential Interactions Between Diatoms And Bacteria Are Shaped By Trace Element Gradients In The Southern Ocean, Alexa R. Sterling, Laura Z. Holland, Randelle M. Bundy, Shannon M. Burns, Kristen N. Buck, P. Dreux Chappell, Bethany D. Jenkins

OES Faculty Publications

The growth of diatoms in the Southern Ocean, especially the region surrounding the West Antarctic Peninsula, is frequently constrained by low dissolved iron and other trace metal concentrations. This challenge may be overcome by mutualisms between diatoms and co-occurring associated bacteria, in which diatoms produce organic carbon as a substrate for bacterial growth, and bacteria produce siderophores, metal-binding ligands that can supply diatoms with metals upon uptake as well as other useful secondary compounds for diatom growth like vitamins. To examine the relationships between diatoms and bacteria in the plankton (diatom) size class (> 3 mu m), we sampled both …


Phytoplankton Thermal Trait Parameterization Alters Community Structure And Biogeochemical Processes In A Modeled Ocean, Stephanie I. Anderson, Clara Fronda, Andrew D. Barton, Sophie Clayton, Tatiana A. Rynearson, Stephanie Dutkiewicz Jan 2023

Phytoplankton Thermal Trait Parameterization Alters Community Structure And Biogeochemical Processes In A Modeled Ocean, Stephanie I. Anderson, Clara Fronda, Andrew D. Barton, Sophie Clayton, Tatiana A. Rynearson, Stephanie Dutkiewicz

OES Faculty Publications

Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (μmax) and temperature coefficients (Q10; the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well-documented methods, PFTs were either assumed to have (1) the same μmax and …


Can We Predict The Future: Juvenile Finfish And Their Seagrass Nurseries In The Chesapeake Bay, Cynthia M. Jones Jan 2014

Can We Predict The Future: Juvenile Finfish And Their Seagrass Nurseries In The Chesapeake Bay, Cynthia M. Jones

OES Faculty Publications

The importance of estuarine seagrass beds as nurseries for juvenile fish has become a universal paradigm, especially for estuaries that are as important as the Chesapeake Bay. Yet, scientific tests of this hypothesis were equivocal depending on species, location, and metrics. Moreover, seagrasses themselves are under threat and one-third of seagrasses have disappeared worldwide with 65 of their losses occurring in estuaries. Although there have been extensive studies of seagrasses in the Chesapeake Bay, surprisingly few studies have quantified the relationship between seagrass as nurseries for finfish in the Bay. Of the few studies that have directly evaluated the use …


An Introduction To Ecology Of Infectious Diseases - Oysters And Estuaries, Eileen E. Hofmann, Susan E. Ford Jan 2012

An Introduction To Ecology Of Infectious Diseases - Oysters And Estuaries, Eileen E. Hofmann, Susan E. Ford

OES Faculty Publications

Infectious diseases are recognized as an important factor regulating marine ecosystems (Harvell et al., 1999, 2002, 2004; Porter et al., 2001; McCallum et al., 2004; Ward and Lafferty, 2004; Stewart et al., 2008; Bienfang et al., 2011). Many of the organisms affected by marine diseases have important ecological roles in estuarine and coastal environments and some are also commercially important. Outbreaks of infectious diseases in these environments, referred to as epizootics, can produce significant population declines and extinctions, both of which threaten biodiversity, food web interactions, and ecosystem productivity (Harvell et al., 2002, 2004).