Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Nutrient And Phytoplankton Dynamics On The Inner Shelf Of The Eastern Bering Sea, Calvin W. Mordy, Allan H. (Allan Houston) Devol, Lisa B. Eisner, Nancy Kachel, Carol A. Ladd, Michael W. Lomas, Peter Proctor, Raymond Nicholas Sambrotto, David Shull, Phyllis Jean Stabeno, Eric Wisegarver Mar 2017

Nutrient And Phytoplankton Dynamics On The Inner Shelf Of The Eastern Bering Sea, Calvin W. Mordy, Allan H. (Allan Houston) Devol, Lisa B. Eisner, Nancy Kachel, Carol A. Ladd, Michael W. Lomas, Peter Proctor, Raymond Nicholas Sambrotto, David Shull, Phyllis Jean Stabeno, Eric Wisegarver

Environmental Sciences Faculty and Staff Publications

In the Bering Sea, the nitrogen cycle near Nunivak Island is complicated due to limited nutrient replenishment across this broad shelf, and substantial nitrogen loss through sedimentary processes. While diffusion at the inner front may periodically support new production, the inner shelf in this region is generally described as a regenerative system. This study combines hydrographic surveys with measurements of nitrogen assimilation and benthic fluxes to examine nitrogen cycling on the inner shelf, and connectivity between the middle and inner shelves of the southern and central Bering Sea. Results establish the inner shelf as primarily a regenerative system even in …


Carbon Sequestration By Australian Tidal Marshes, Peter I. Macreadie, Q. R. Oliver, J. J. Kelleway, Oscar Serrano, P. E. Carnell, C. J. Ewers Lewis, T. B. Atwood, J. Sanderman, J. Baldock, R. M. Connolly, C. M. Duarte, Paul Lavery, A. Steven, C. E, Lovelock Mar 2017

Carbon Sequestration By Australian Tidal Marshes, Peter I. Macreadie, Q. R. Oliver, J. J. Kelleway, Oscar Serrano, P. E. Carnell, C. J. Ewers Lewis, T. B. Atwood, J. Sanderman, J. Baldock, R. M. Connolly, C. M. Duarte, Paul Lavery, A. Steven, C. E, Lovelock

Research outputs 2014 to 2021

Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha − 1 (range 14 – 963 Mg OC ha − 1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha − 1 yr − 1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC …


Eukaryotic Microbes, Principally Fungi And Labyrinthulomycetes, Dominate Biomass On Bathypelagic Marine Snow, Alexander B. Bochdansky, Melissa A. Clouse, Gerhard J. Herndl Jan 2017

Eukaryotic Microbes, Principally Fungi And Labyrinthulomycetes, Dominate Biomass On Bathypelagic Marine Snow, Alexander B. Bochdansky, Melissa A. Clouse, Gerhard J. Herndl

OES Faculty Publications

In the bathypelagic realm of the ocean, the role of marine snow as a carbon and energy source for the deep-sea biota and as a potential hotspot of microbial diversity and activity has not received adequate attention. Here, we collected bathypelagic marine snow by gentle gravity filtration of sea water onto μm filters from similar to 1000 to 3900 m to investigate the relative distribution of eukaryotic microbes. Compared with sediment traps that select for fast-sinking particles, this method collects particles unbiased by settling velocity. While prokaryotes numerically exceeded eukaryotes on marine snow, eukaryotic microbes belonging to two very distant …


Climate Change, Spruce Root Phenology, And Allocation Of Carbon Below- And Above-Ground, Marie Louise Orton Jan 2017

Climate Change, Spruce Root Phenology, And Allocation Of Carbon Below- And Above-Ground, Marie Louise Orton

Legacy Theses & Dissertations (2009 - 2024)

Tree ring analysis has relied on a close relationship between climate and photosynthetically-derived stem enlargement. Lengthening growing seasons associated with climate warming have been predicted to enhance carbon sequestration as wood in trees, but this