Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Michigan Tech Publications

Great Lakes Research Center

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang May 2022

Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang

Michigan Tech Publications

The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, …


The Changing Face Of Winter: Lessons And Questions From The Laurentian Great Lakes, Ted Ozersky, Andrew J. Bramburger, Ashley K. Elgin, Henry A. Vanderploeg, Jia Wang, Jay A. Austin, Guy Meadows, Et. Al. May 2021

The Changing Face Of Winter: Lessons And Questions From The Laurentian Great Lakes, Ted Ozersky, Andrew J. Bramburger, Ashley K. Elgin, Henry A. Vanderploeg, Jia Wang, Jay A. Austin, Guy Meadows, Et. Al.

Michigan Tech Publications

Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter-period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have …