Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Attraction-Repulsion Forces Between Biological Cells: A Theoretical Explanation Of Empirical Formulas, Olga Kosheleva, Martine Ceberio, Vladik Kreinovich May 2017

Attraction-Repulsion Forces Between Biological Cells: A Theoretical Explanation Of Empirical Formulas, Olga Kosheleva, Martine Ceberio, Vladik Kreinovich

Departmental Technical Reports (CS)

Biological calls attract and repulse each other: if they get too close to each other, they repulse, and if they get too far away from each other, they attract. There are empirical formulas that describe the dependence of the corresponding forces on the distance between the cells. In this paper, we provide a theoretical explanation for these empirical formulas.


Computational Methods For Prediction And Classification Of G Protein-Coupled Receptors, Khodeza Begum Jan 2017

Computational Methods For Prediction And Classification Of G Protein-Coupled Receptors, Khodeza Begum

Open Access Theses & Dissertations

G protein-coupled receptors (GPCRs) constitute the largest group of membrane receptor proteins in eukaryotes. Due to their significant roles in many physiological processes such as vision, smell, and inflammation, GPCRs are the targets of many prescribed drugs. However, the functional and structural diversity of GPCRs has kept their prediction and classification based on amino acid sequence data as a challenging bioinformatics problem. As existing computational methods to predict and classify GPCRs are focused on mammalian (mostly human) data, the ultimate goal of our project is to establish an ensemble approach and implement a web-based software that can be used reliably …


Label-Free Raman Imaging To Monitor Breast Tumor Signatures, John Ciubuc Jan 2017

Label-Free Raman Imaging To Monitor Breast Tumor Signatures, John Ciubuc

Open Access Theses & Dissertations

Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and …


Complementary Charged Molecular Imprints Of West Nile Virus Antibodies, Julio Rincon Jan 2017

Complementary Charged Molecular Imprints Of West Nile Virus Antibodies, Julio Rincon

Open Access Theses & Dissertations

There is a significant demand for robust and stable receptor molecules that can mimic biological molecules, such as antibodies. Relying only on natural recognition molecules have greatly limited the uses and capabilities of many aspects of health sciences due to product expense and stability. This is especially important in medically underserved areas where the lack of resources and faulty or limited cold-chain makes antibody based diagnostics very difficult to implement.

With molecular imprinting, it is possible to recognize diseases with the added advantage of product stability, long term use, fast preparation and ease of scalability, all while being cost effective. …


Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy, Syeed Ehsan Ahmed Jan 2017

Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy, Syeed Ehsan Ahmed

Open Access Theses & Dissertations

Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance …