Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Intrinsic Buffer Hydroxyl Radical Dosimetry For Hydroxyl Radical Protein Footprinting, Addison Roush May 2020

Intrinsic Buffer Hydroxyl Radical Dosimetry For Hydroxyl Radical Protein Footprinting, Addison Roush

Honors Theses

Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry is a powerful technique for the analysis of protein topography as it generates covalent mass labels that can survive downstream sample handling, and it is sensitive to the solvent accessibility of amino acid sidechains. Of the multiple platforms for HRPF, fast photochemical oxidation of proteins (FPOP) utilizes a pulsed 248 nm KrF excimer laser to label proteins by photolyzing hydrogen peroxide. FPOP is the most widely used HRPF platform because it labels proteins faster than unfolding can occur. Variations in FPOP sample conditions make it difficult to compare results between experiments …


Study Of Pharmaceutical Tablets Using Raman Mapping, Kyle Joseph Pauly May 2020

Study Of Pharmaceutical Tablets Using Raman Mapping, Kyle Joseph Pauly

Honors Theses

Covalent bonds are the strongest type of bonds holding molecules together. Based on the pattern of bonding of the molecule, the atoms associated with the bond will vibrate at a specific frequency. Utilizing vibrational spectroscopy, such as Raman spectroscopy, these unique vibrational frequencies can be used to detect the presence of analytes over a selected area. Furthermore, the intensities of the vibrational modes can be tracked to comparatively quantify the concentration of analytes at various locations. This is a method of great importance due to its ability to compare pharmaceutical tablets synthesized with different techniques. Here, the presence and concentration …


Investigatin Actin-Myosin Mechanics To Model Heart Disease Using Fluorescence Microscopy And Optical Trapping, Justin Edward Reynolds May 2020

Investigatin Actin-Myosin Mechanics To Model Heart Disease Using Fluorescence Microscopy And Optical Trapping, Justin Edward Reynolds

Honors Theses

Hypertrophic cardiomyopathy (HCM) is a hereditary disease in which the myocardium becomes hypertrophied, making it more difficult for the heart to pump blood. HCM is commonly caused by a mutation in the β-cardiac myosin II heavy chain. Myosin is a motor protein that facilitates muscle contraction by converting chemical energy from ATP hydrolysis into mechanical work and concomitantly moving along actin filaments. Optical tweezers have been used previously to analyze single myosin biophysical properties; however, myosin does not work as a single unit within the heart. Multiple myosin interacts to displace actin filaments and do not have the same properties …


Spectroscopic And Computational Studies Of The Agricultural Active Ingredient Dicamba, James Johnson Apr 2020

Spectroscopic And Computational Studies Of The Agricultural Active Ingredient Dicamba, James Johnson

Honors Theses

3,6-dichloro-2-methoxy benzoic acid, more commonly known as Dicamba, is the active ingredient in an array of pesticides used on farmlands across the globe. Dicamba’s mode of action works by mimicking the plant hormone auxin, which is synonymous to growth hormones in mammals. The mimicking of auxin results in excessive elongation and growing, which is eventually fatal for plants when the rate of growth can no longer be sustained. Dicamba has risen in prominence in recent years due to drift damage as a result of Dicamba’s high volatility. Having the ability to identify Dicamba is crucial for the agricultural industry. The …